
Consuming

Web Services from RPG using HTTPAPI

Presented by

Scott Klement
http://www.scottklement.com

© 2004-2009, Scott Klement

“There are 10 types of people in the world.
Those who understand binary, and those who don’ t.”

2

Why Web Services?

• How is this different from the Web applications I see all
the time?

• Couldn't I just automate those?

• What good is a Web service?

A web service provides the ability to call a
program (or procedure) over the Web.

I'll answer these questions, but first some
background . . .

3

Web Applications

• A Web browser displays a web page containing input
fields

• The user types some data or makes some selections

• The browser sends the data to a web server which then
passes it on to a program

• After processing, the program spits out a new web page
for the browser to display

In a typical web application...

4

Web Enabled Invoice

5

Web Enabled Invoice

6

An idea is born

• Automatically download the invoice in a program.

• Read the invoice from the download file, get the invoice
number as a substring of the 3rd line

• Get the date as a substring of the 4th line

• Get the addresses from lines 6-9

Eureka! Our company could save time!

Problem: The data is intended for people to
read. Not a computer program!

• Data could be moved, images inserted, colors added

• Every vendor's invoice would be complex & different

7

Need to Know "What"

• Where they sit on a page.

• What they look like

What you want to know is what things are,
rather than:

The vendor needs to send data that's
"marked up."

8

"Marked Up" Data

9

"Marked Up" Data with XML

<i nvoi ce>
<r emi t t o>

<company>Acme Wi dget s, I nc</ company>
</ r emi t t o>
<shi pt o>

<name>Scot t Kl ement </ name>
<addr ess>

<addr l i ne1>123 Sesame St . </ addr l i ne1>
<ci t y>New Yor k</ c i t y>
<st at e>NY</ st at e>
<post al Code>54321</ post al Code>

</ addr ess>
</ shi pt o>
<bi l l t o>

<name>Wayne Madden</ name>
<company>Pent on Medi a - Lovel and</ company>
<addr ess>

<addr l i ne1>221 E. 29t h St . </ addr l i ne1>
<ci t y>Lovel and</ c i t y>
<st at e>CO</ st at e>
<post al Code>80538</ post al Code>

</ addr ess>
</ bi l l t o>

10

"Marked Up" Data with XML

<i t eml i st >
<i t em>

<i t emno>56071</ i t emno>
<descr i pt i on>Bl ue Wi dget </ descr i pt i on>
<quant i t y>34</ quant i t y>
<pr i ce>1. 50</ pr i ce>
<l i net ot al >51. 00</ l i net ot al >

</ i t em>
<i t em>

<i t emno>98402</ i t emno>
<descr i pt i on>Red Wi dget wi t h a Hat </ descr i pt i on>
<quant i t y>9</ quant i t y>
<pr i ce>6. 71</ pr i ce>
<l i net ot al >60. 39</ l i net ot al >

</ i t em>
<i t em>

<i t emno>11011</ i t emno>
<descr i pt i on>Cher r y Wi dget </ descr i pt i on>
<quant i t y>906</ quant i t y>
<pr i ce>0. 50</ pr i ce>
<l i net ot al >453. 00</ l i net ot al >

</ i t em>
</ i t eml i st >
<t ot al >564. 39</ t ot al >

</ i nvoi ce>

11

What is a Web Service?

• Very similar in concept to the CALL command.
CALL PGM(EXCHRATE) PARM(‘ us’ ‘ eur o’ &DOLLARS &EUROS)

• Runs over the Web, so can call programs on
other computers anywhere in the world.

• Works on intranets as well

A “ program call” (or subprocedure call) that
works over the Web.

Imagine what you can do....

12

Imagine these scenarios...

Imagine some scenarios:
• You're writing a program that generates price quotes. Your quotes are in US

dollars. Your customer is in Germany. You can call a program that's located
out on the Internet somewhere to get the current exchange rate for the Euro.

• You're accepting credit cards for payment. After your customer keys a credit
card number into your application, you call a program on your bank's computer
to get the purchase approved instantly.

• You've accepted an order from a customer, and want to ship the goods via
UPS. You can call a program running on UPS's computer system and have it
calculate the cost of the shipment while you wait.

• Later, you can track that same shipment by calling a tracking program on
UPS's system. You can have up-to-the-minute information about where the
package is.

These are not just dreams of the future. They are a reality today with Web services.

13

Examples of Web Services

United Parcel Service (UPS) provides web services for:
• Verifying Package Delivery
• Viewing the signature that was put on a package
• Package Time-in-Transit
• Calculating Rates and Services
• Obtaining correct shipping information (zip codes, etc.)

• FedEx provides web services as well.
• United States Postal Service
• Amazon.com

• Validate Credit Cards
• Get Stock Quotes
• Check the Weather

14

How do they work?

• You make an XML document that specifies the program
(or “operation”) to call, as well as it’s input parameters.

• You use the HTTP protocol (the one your browser uses
to download web pages) to send that XML document to
a Web server.

• The Web server runs a program on it’s side, and outputs
a new XML document containing the output parameters.

A “ program call” over the Web.

15

SOAP and WSDL

Although there's a few different ways of calling web services today, things are becoming
more and more standardized. The industry is standardizing on a technology called SOAP.

SOAP = Simple Object Access Protocol

SOAP is an XML language that describes the parameters that you pass to the programs
that you call. When calling a Web service, there are two SOAP documents -- an input
document that you send to the program you're calling, and an output document that gets
sent back to you.

The format of a SOAP message can be determined from another XML document called a
WSDL (pronounced "wiz-dull") document.

WSDL = Web Services Description Language

A WSDL document will describe the different "programs you can call" (or "operations" you
can perform), as well as the parameters that need to be passed to those operations.

16

WSDL

<def i ni t i ons>

<t ypes>
def i ni t i on of t ypes.

</ t ypes>

<message>
def i ni t i on of a message. . . .

</ message>

<por t Type>
def i ni t i on of a por t

</ por t Type>

<bi ndi ng>
def i ni t i on of a bi ndi ng. . . .

</ bi ndi ng>

<ser vi ce>
a l ogi cal gr oupi ng of por t s. . .

</ ser v i ce>

</ def i ni t i ons>

<types> = the data types that
the web service uses.

<message> = the messages
that are sent to and received

from the web service.

<portType> = the operations
(or, “programs/procedures” you

can call for this web service.

<binding> = the network
protocol used.

<service> = a grouping of
ports. (Much like a service

program contains a group of
subprocedures.)

17

SOAP

<soap: Envel ope xml ns: soap=" ht t p: / / www. w3. or g/ 2001/ 12/ soap- envel ope"
soap: encodi ngSt y l e=" ht t p: / / www. w3. or g/ 2001/ 12/ soap- encodi ng" >

<soap: Header >
(optional) contains header info, like payment info or authentication info

(crypto key, userid/password, etc)
</ soap: Header >

<soap: Body>
. . .
Cont ai ns t he oper at i on name (i . e. t he " pr ocedur e t o cal l ") as
wel l as par amet er i nf o. These ar e appl i cat i on def i ned.
. . .
<soap: Faul t >

(opt i onal) er r or i nf o.
</ soap: Faul t >
. . .

</ soap: Body>

</ soap: Envel ope>

Here's the skeleton of a SOAP message:

18

Sample SOAP Documents

<?xml ver s i on=" 1. 0" ?>
<SOAP: Envel ope>

<SOAP: Body>
<Conver si onRat e>

<Fr omCur r ency>USD</ Fr omCur r ency>
<ToCur r ency>EUR</ ToCur r ency>

</ Conver si onRat e>
</ SOAP: Body>

</ SOAP: Envel ope>

I've removed the namespace and encoding information to keep this example clear and
simple. (In a real program, you'd need those to be included as well.)

<?xml ver s i on=" 1. 0" ?>
<SOAP: Envel ope>

<SOAP: Body>
<Conver si onRat eResponse>

<Conver si onRat eResul t >0. 7207</ Conver si onRat eResul t >
</ Conver si onRat eResponse>

</ SOAP: Body>
</ SOAP: Envel ope>

In
p

u
t

M
es

sa
g

e
O

u
tp

u
t

M
es

sa
g

e

19

SoapUI (1/2)

Click File / New WSDL Project

PROJECT NAME

can be any name – use
something you'll

remember.

INITIAL WSDL

can be either a URL on
the web, or a file on

your hard drive.

You can use "Browse"
to navigate via a

standard Windows file
dialog.

SoapUI is an open source (free of charge) program that you can use to get the SOAP
messages you'll need from a WDSL document. http://www.soapui.org

20

SoapUI (2/2)

SoapAction is found in the
box to the left. (Highlight
the "Operation" not the

request.

If you expand the tree
on the left, and double-
click the operation, it
shows you the SOAP

message.

You can edit the SOAP
and click the green

arrow to give it a try.

21

HTTPAPI

Now that you know the XML data that needs to be sent and received, you need a method
of sending that data to the server, and getting it back.

Normally when we use the Web, we use a Web browser. The browser connects to a web
server, issues our request, downloads the result and displays it on the screen.

When making a program-to-program call, however, a browser isn't the right tool. Instead,
you need a tool that knows how to send and receive data from a Web server that can be
integrated right into your RPG programs.

That's what HTTPAPI is for!

• HTTPAPI is a free (open source) tool to act like an HTTP client (the role usually played
by the browser.)

• HTTPAPI was originally written by me (Scott Klement) to assist with a project that I had
back in 2001.

• Since I thought it might be useful to others, I made it free and available to everyone.

http://www.scottklement.com/httpapi/

22

More about HTTPAPI

• I needed a way to automate downloading ACS updates
from the United States Postal Service

• A friend needed a way to track packages with UPS from
his RPG software

• Since many people seemed to need this type of
application, I decided to make it publicly available under
an Open Source license

How did HTTPAPI come about?

23

Currency Exchange Example

I've shown you the sample WSDL and SOAP documents for XMethod.net's "Currency
Exchange" demonstration web service.

Over the next several slides, we'll look at an RPG example that uses HTTPAPI to consume
this Currency Exchange Service.

This type of program is often referred to as a Web Service Consumer.

In business, a customer that utilizes your product is referred to as a "consumer". For
example, if my company makes sausage, and you buy one from the grocery store and eat
it, you're the "end consumer."

This is analogous to a program that uses a web service. When the service is used, it's
referred to as "consuming" the service. Therefore, a program that utilizes a Web service is
a Web Service Consumer.

24

Web Service Consumer (1/4)
H DFTACTGRP(* NO) BNDDI R(' LI BHTTP/ HTTPAPI ')

D EXCHRATE PR Ext Pgm(' EXCHRATE')
D Count r y1 3A const
D Count r y2 3A const
D Amount 15P 5 const
D EXCHRATE PI
D Count r y1 3A const
D Count r y2 3A const
D Amount 15P 5 const

/ copy l i bht t p/ qr pgl esr c, ht t papi _h

D I ncomi ng PR
D r at e 8F
D dept h 10I 0 val ue
D name 1024A var yi ng const
D pat h 24576A var yi ng const
D val ue 32767A var yi ng const
D at t r s * di m(32767)
D const opt i ons(* var si ze)

D SOAP s 32767A var yi ng
D r c s 10I 0
D r at e s 8F
D Resul t s 12P 2
D msg s 50A
D wai t s 1A

A program that
uses a Web

Service is called
a "Web Service

Consumer" .

The act of calling
a Web service is

referred to as
"consuming a
web service."

25

Web Service Consumer (2/4)

/ f r ee
SOAP =

' <?xml ver si on=" 1. 0" encodi ng=" i so- 8859- 1" st andal one=" no" ?>'
+' <SOAP: Envel ope'
+' xml ns: SOAP=" ht t p: / / schemas. xml soap. or g/ soap/ envel ope/ " '
+' xml ns: t ns=" ht t p: / / www. webser vi ceX. NET/ " >'
+' <SOAP: Body>'
+' <t ns: Conver si onRat e>'
+' <t ns: Fr omCur r ency>' + %t r i m(Count r y1) +' </ t ns : Fr omCur r ency>'
+' <t ns: ToCur r ency>' + %t r i m(Count r y2) + ' </ t ns: ToCur r ency>'
+' </ t ns : Conver si onRat e>'
+' </ SOAP: Body>'
+' </ SOAP: Envel ope>' ;

r c = ht t p_ur l _post _xml (
' ht t p: / / www. webser vi cex. net / Cur r encyConver t or . asmx'

: %addr (SOAP) + 2
: %l en(SOAP)
: * NULL
: %paddr (I ncomi ng)
: %addr (r at e)
: HTTP_TI MEOUT
: HTTP_USERAGENT
: ' t ex t / xml '
: ' ht t p: / / www. webser vi ceX. NET/ Conver si onRat e') ;

Constructing the
SOAP message is

done with a big
EVAL statement.

This routine tells
HTTPAPI to send

the SOAP
message to a

Web server, and
to parse the XML

response.

As HTTPAPI receives the XML
document, it'll call the INCOMING

subpocedure for every XML
element, passing the " rate"

variable as a parameter.

26

Web Service Consumer (3/4)
i f (r c <> 1) ;

msg = ht t p_er r or () ;
el se;

Resul t = %dech(Amount * r at e: 12: 2) ;
msg = ' Resul t = ' + %char (Resul t) ;

endi f ;

dspl y msg ' ' wai t ;

* i nl r = * on;

/ end- f r ee

P I ncomi ng B
D I ncomi ng PI
D r at e 8F
D dept h 10I 0 val ue
D name 1024A var yi ng const
D pat h 24576A var yi ng const
D val ue 32767A var yi ng const
D at t r s * di m(32767)
D const opt i ons(* var si ze)

/ f r ee
i f (name = ' Conver si onRat eResul t ') ;

r at e = %f l oat (val ue) ;
endi f ;

/ end- f r ee
P E

If an error occurs,
ask HTTPAPI

what the error is.

Display the error
or result on the

screen.

This is called for
every XML element

in the response.

When the element is
a "Conversion Rate

Result" element,
save the value, since

it's the exchange
rate we're looking

for!

27

Web Service Consumer (4/4)

Command Ent r y
Request l evel : 1

Pr evi ous commands and messages:
> cal l exchr at e par m(' USD' ' EUR' 185. 50)

DSPLY Resul t = 133. 69

Bot t om
Type command, pr ess Ent er .
===>

F3=Exi t F4=Pr ompt F9=Ret r i eve F10=I ncl ude det ai l ed messages
F11=Di spl ay f ul l F12=Cancel F13=I nf or mat i on Assi st ant F24=Mor e keys

Here's a sample of the output from calling the preceding program:

28

What Just Happened?

HTTPAPI does not know how to create an XML document, but it does
know how to parse one.

In the previous example:

• The SOAP document was created in a variable using a big EVAL statement.
• The variable that contained the SOAP document was passed to HTTPAPI

and HTTPAPI sent it to the Web site.
• The subprocedure we called (ht t p_ur l _post _xml) utilizes HTTPAPI's

built-in XML parser to parse the result as it comes over the wire.
• As each XML element is received, the I ncomi ng() subprocedure is called.
• When that subprocedure finds a <Conver si onRat eResul t > element, it

saves the element's value to the "rate" variable.
• When ht t p_ur l _post _xml () has completed, the rate variable is set.

You can multiply the input currency amount by the rate to get the output
currency amount.

29

No! Let Me Parse It!

If you don't want to use HTTPAPI's XML parser, you can call the
ht t p_ur l _post () API instead of ht t p_ur l _post _xml () .

In that situation, the result will be saved to a stream file in the IFS, and you
can use another XML parser instead of the one in HTTPAPI.

. . .
r c = ht t p_ur l _post (

' ht t p: / / www. webser vi cex. net / Cur r encyConver t or . asmx'
: %addr (SOAP) + 2
: %l en(SOAP)
: ' / t mp/ Cur r encyExchangeResul t . soap'
: HTTP_TI MEOUT
: HTTP_USERAGENT
: ' t ext / xml '
: ' ht t p: / / www. webser v i ceX. NET/ Conver si onRat e') ;

. . .

For example, you may want to use RPG's built in support for XML in V5R4 to
parse the document rather than let HTTPAPI do it. (XML-SAX op-code)

30

Is /FREE required?

In my examples so far, i've used free format RPG. It's not
required, however, you can use fixed format if you prefer. Just
use EVAL or CALLP statements.

. . .
c eval SOAP = ' <?xml ver si on=" 1. 0" >'
c + ' <SOAP- ENV: Envel ope . .

. . . and so on . . .

c cal l p ht t p_ur l _post _xml (
c ' ht t p: / / www. webser vi cex. net / ' +
c ' Cur r encyConver t or . asmx'
c : %addr (SOAP) + 2
c : %l en(SOAP)
c : * NULL
c : %paddr (I ncomi ng)
c : %addr (r at e)
c : HTTP_TI MEOUT
c : HTTP_USERAGENT
c : ' t ext / xml '
c : ' ht t p: / / www. webser vi ceX. NET/ ' +
c Conver si onRat e')

. . .

31

Handling Errors with HTTP API

D ht t p_er r or PR 80A
D peEr r or No 10I 0 opt i ons(* nopass)

Most of the HTTPAPI routines return 1 when successful
• Although this allows you to detect when something has failed, it only tells

you that something failed, not what failed
• The ht t p_er r or () routine can tell you an error number, a message, or both

• The following is the prototype for the ht t p_er r or () API

i f (r c <> 1) ;
msg = ht t p_er r or () ;
/ / you can now pr i nt t hi s message on t he scr een,
/ / or pass i t back t o a cal l i ng pr ogr am,
/ / or what ever you l i ke.

endi f ;

The human-readable message is particularly useful for letting the user
know what's going on.

32

Handling Errors, continued…

The error number is useful when the program anticipates and tries to handle
certain errors.

i f (r c <> 1) ;

ht t p_er r or (er r num) ;

sel ect ;
when er r num = HTTP_NOTREG;

/ / app needs t o be r egi s t er ed wi t h DCM
exsr Regi s t er App;

when er r num = HTTP_NDAUTH;
/ / s i t e r equi r es a user i d/ passwor d
exsr Request Aut h;

ot her ;
msg = ht t p_er r or () ;

endsl ;

endi f ;

These are constants
that are defined in
HTTPAPI_H (and

included with HTTPAPI)

33

WSDL2RPG

Instead of SoapUI, you might consider using WSDL2RPG – another open source
project, this one from Thomas Raddatz. You give WSDL2RPG the URL or IFS path of
a WSDL file, and it generates the RPG code to call HTTPAPI.

WSDL2RPG URL(' / home/ kl emscot / Cur r encyConver t or . wsdl ')
SRCFI LE(LI BSCK/ QRPGLESRC)
SRCMBR(CURRCONV)

Then compile CURRCONV as a module, and call it with the appropriate parameters.

• Code is still beta, needs more work.
• The RPG it generates often needs to be tweaked before it'll compile.
• The code it generates is much more complex than what you'd use if you generated it

yourself, or used SoapUI
• Can only do SOAP (not POX or REST)

But don't be afraid to help with the project! It'll be really nice when it's perfected!
http://www.tools400.de/English/Freeware/WSDL2RPG/wsdl2rpg.html

34

About SSL with HTTPAPI

The next example (UPS package tracking) requires that you connect using
SSL. (This is even more important when working with a bank!)

HTTPAPI supports SSL when you specify "https:" instead of "http:" at the
beginning of the URL.

It uses the SSL routines in the operating system, therefore you must have all
of the required software installed. IBM requires the following:

• Digital Certificate Manager (option 34 of IBM i, 57xx-SS1)

• TCP/IP Connectivity Utilities for iSeries (57xx-TC1)

• IBM HTTP Server for iSeries (57xx-DG1)

• IBM Developer Kit for Java (57xx-JV1)

• IBM Cryptographic Access Provider (5722-AC3) (pre-V5R4 only)

Because of (historical) import/export laws, 5722-AC3 is not shipped with i. However,
it's a no-charge item. You just have to order it separately from your business partner.
It is included automatically in V5R4 and later as 57xx-NAE

35

UPS Example (slide 1 of 11)

This demonstrates the "UPS Tracking Tool" that's part of UPS OnLine
Tools. There are a few differences between this and the previous
example:

• You have to register with UPS to use their services (but it's free)

• You'll be given an access key, and you'll need to send it with each
request.

• UPS requires SSL to access their web site.

• UPS does not use SOAP or WSDL for their Web services – but does
use XML. Some folks call this "Plain Old XML" (POX).

• Instead of WSDL, they provide you with documentation that
explains the format of the XML messages.

• That document will be available from their web site after you've
signed up as a developer.

36

UPS Example (slide 2 of 11)

37

UPS Example (slide 3 of 11)

38

UPS Example (slide 4 of 11)

. . .

D UPS_USERI D C ' <put your user i d her e>'
D UPS_PASSWD C ' <put your passwor d her e>'
D UPS_LI CENSE C ' <put your access l i cense her e>‘

. . .

d act s 10I 0
d act i v i t y ds qual i f i ed
d di m(10)
d Dat e 8A
d Ti me 6A
D Desc 20A
D Ci t y 20A
D St at e 2A
D St at us 20A
D Si gnedBy 20A

. . .
/ / Ask user f or t r acki ng number .
ex f mt Tr ackNo;

UPS provides these
when you sign up as a

developer.

39

UPS Example (slide 5 of 11)

post Dat a =
' <?xml ver si on=" 1. 0" ?>' +
' <AccessRequest xml : l ang=" en- US" >' +

' <AccessLi censeNumber >' + UPS_LI CENSE + ' </ AccessLi censeNumber >' +
' <User I d>' + UPS_USERI D + ' </ User I d>' +
' <Passwor d>' + UPS_PASSWD + ' </ Passwor d>' +

' </ AccessRequest >' +
' <?xml ver si on=" 1. 0" ?>' +
' <Tr ackRequest xml : l ang=" en- US" >' +

' <Request >' +
' <Tr ansact i onRef er ence>' +

' <Cust omer Cont ext >Exampl e 1</ Cust omer Cont ext >' +
' <Xpci Ver si on>1. 0001</ Xpci Ver si on>' +

' </ Tr ansact i onRef er ence>' +
' <Request Ac t i on>Tr ack</ Request Act i on>' +
' <Request Opt i on>act i v i t y</ Request Opt i on>' +

' </ Request >' +
' <Tr acki ngNumber >' + Tr acki ngNo + ' </ Tr ack i ngNumber >' +

' </ Tr ackRequest >' ;

r c = ht t p_ur l _post _xml (' ht t ps: / / wwwci e. ups . com/ ups. app/ xml / Tr ack'
: %addr (pos t Dat a) + 2
: %l en(post Dat a)
: %paddr (St ar t Of El ement)
: %paddr (EndOf El ement)
: * NULL) ;

i f (r c <> 1) ;
msg = ht t p_er r or () ;
/ / REPORT ERROR TO USER

endi f ;

The St ar t Of El ement
and EndOf El ement

routines are called while
ht t p_ur l _post _xml is

running

40

UPS Example (slide 6 of 11)

. . .
f or RRN = 1 t o act ;

moni t or ;
t empDat e = %dat e(act i v i t y(RRN) . dat e: * I SO0) ;
scDat e = %char (t empDat e: * USA) ;

on- er r or ;
scDat e = * bl anks;

endmon;

moni t or ;
t empTi me = %t i me(act i v i t y(RRN) . t i me: * HMS0) ;
scTi me = %char (t empTi me: * HMS) ;

on- er r or ;
scTi me = * bl anks;

endmon;

scDesc = act i v i t y(RRN) . desc;
scCi t y = act i v i t y(RRN) . ci t y;
scSt at e = act i v i t y(RRN) . st at e;
scSt at us = act i v i t y(RRN) . st at us;

i f (scSi gnedBy = * bl anks) ;
scSi gnedBy = act i v i t y(RRN) . Si gnedBy;

endi f ;

wr i t e SFLREC;
endf or ;

. . .

Since the
StartOfElement and

EndOfElement routines
read the XML data and
put it in the array, when

http_url_post_xml is
complete, we're ready to

load the array into the
subfile.

41

UPS Example (slide 7 of 11)

<?xml ver si on=" 1. 0" ?>
<Tr ackResponse>

<Shi pment >
. . .

<Package>
<Act i v i t y>

<Act i v i t yLocat i on>
<Addr ess>

<Ci t y>MI LWAUKEE</ Ci t y>
<St at ePr ovi nceCode>WI </ St at ePr ovi nceCode>
<Post al Code>53207</ Post al Code>
<Count r yCode>US</ Count r yCode>

</ Addr ess>
<Code>AI </ Code>
<Descr i pt i on>DOCK</ Descr i pt i on>
<Si gnedFor ByName>DENNI S</ Si gnedFor ByName>

</ Act i v i t yLocat i on>
<St at us>

<St at usType>
<Code>D</ Code>
<Descr i pt i on>DELI VERED</ Descr i pt i on>

</ St at usType>
<St at usCode>

<Code>KB</ Code>
</ St at usCode>

</ St at us>
<Dat e>20041109</ Dat e>
<Ti me>115400</ Ti me>

</ Act i v i t y>

This is what the
response from UPS will

look like.

HTTPAPI will call the
St ar t Of El ement

procedure for every
"start" XML element.

HTTPAPI will call the
EndOf El ement

procedure for every
"end" XML element. At
that time, it'll also pass

the value.

42

UPS Example (slide 8 of 11)

<Act i v i t y>
<Act i v i t yLocat i on>

<Addr ess>
<Ci t y>OAK CREEK</ Ci t y>
<St at ePr ovi nceCode>WI </ St at ePr ov i nceCode>
<Count r yCode>US</ Count r yCode>

</ Addr ess>
</ Act i v i t yLocat i on>
<St at us>

<St at usType>
<Code>I </ Code>
<Descr i pt i on>OUT FOR DELI VERY</ Descr i pt i on>

</ St at usType>
<St at usCode>

<Code>DS</ Code>
</ St at usCode>

</ St at us>
<Dat e>20041109</ Dat e>
<Ti me>071000</ Ti me>

</ Act i v i t y>
. . .
</ Package>

</ Shi pment >
</ Tr ackResponse>

There are additional <Act i vi t y> sections and other XML that I omitted
because it was too long for the presentation.

43

UPS Example (slide 9 of 11)

P St ar t Of El ement B
D St ar t Of El ement PI
D User Dat a * val ue
D dept h 10I 0 val ue
D name 1024A var yi ng const
D pat h 24576A var yi ng const
D at t r s * di m(32767)
D const opt i ons(* var si ze)

/ f r ee

i f pat h = ' / Tr ackResponse/ Shi pment / Package' and name=' Ac t i v i t y ' ;
act = act + 1;

endi f ;

/ end- f r ee
P E

This is called during ht t p_ur l _post _xml () for each start element that UPS
sends. It's used to advance to the next array entry when a new package record
is received.

44

UPS Example (slide 10 of 11)

P EndOf El ement B
D EndOf El ement PI
D User Dat a * val ue
D dept h 10I 0 val ue
D name 1024A var yi ng const
D pat h 24576A var yi ng const
D val ue 32767A var yi ng const
D at t r s * di m(32767)
D const opt i ons(* var si ze)

/ f r ee

sel ect ;
when pat h = ' / Tr ackResponse/ Shi pment / Package/ Act i v i t y ' ;

sel ec t ;
when name = ' Dat e' ;

act i v i t y (act) . Dat e = val ue;
when name = ' Ti me' ;

act i v i t y (act) . Ti me = val ue;
endsl ;

when pat h = ' / Tr ackResponse/ Shi pment / Package/ Act i v i t y ' +
' / Act i v i t yLocat i on' ;

sel ec t ;
when name = ' Descr i pt i on' ;

act i v i t y (act) . Desc = val ue;
when name = ' Si gnedFor ByName' ;

act i v i t y (act) . Si gnedBy = val ue;
endsl ;

This is called for each
ending value. We use it

to save the returned
package information

into an array.

Remember, this is
called by

ht t p_ur l _post _xml ,
so it'l l run before the
code that loads this

array into the subfile!

45

UPS Example (slide 11 of 11)

when pat h = ' / Tr ackResponse/ Shi pment / Package/ Act i v i t y ' +
' / Act i v i t yLocat i on/ Addr ess' ;

sel ec t ;
when name = ' Ci t y ' ;

act i v i t y (act) . Ci t y = val ue;
when name = ' St at ePr ov i nceCode' ;

act i v i t y (act) . St at e = val ue;
endsl ;

when pat h = ' / Tr ackResponse/ Shi pment / Package/ Act i v i t y ' +
' / St at us/ St at usType' ;

i f name = ' Descr i pt i on' ;
act i v i t y(ac t) . St at us = val ue;

endi f ;

ends l ;

/ end- f r ee
P E

46

For More Information

You can download HTTPAPI from Scott's Web site:
ht t p: / / www. scot t k l ement . com/ ht t papi /

Most of the documentation for HTTPAPI is in the source code itself.
• Read the comments in the HTTPAPI _H member
• Sample programs called EXAMPLE1 - EXAMPLE20

The best place to get help for HTTPAPI is in the mailing list. There's
a link to sign up for this list on Scott's site.

Info about Web Services:
• Web Services: The Next Big Thing by Scott N. Gerard

ht t p: / / www. syst emi net wor k. com/ Ar t i c l e. cf m?I D=11607
• Will Web Services Serve You? by Aaron Bartell

ht t p: / / www. syst emi net wor k. com/ Ar t i c l e. cf m?I D=19651
• W3 Consortium

ht t p: / / www. w3. or g and ht t p: / / www. w3school s. com

47

For More Information

Web Service info, continued…
• Consuming Web Services with HTTPAPI and SoapUI by Scott Klement

ht t p: / / syst emi net wor k. com/ ar t i c l e/ r pg- consumi ng- web- ser vi ces- ht t papi - and- soapui

• Report the Weather On Your Sign-on Screen by Scott Klement
ht t p: / / syst emi net wor k. com/ ar t i c l e/ r epor t - weat her - your - s i gn- scr een

• Call a Web Service with WSDL2RPG
ht t p: / / syst emi net wor k. com/ ar t i c l e/ cal l - web- ser vi ce- wdsl 2r pg

• SOAP Message Generator (automatically converts WSDL to SOAP):
http://www.soapclient.com/soapmsg.html

• WebServiceX.net (Many demo web services)
http://www.WebServiceX.net

• XMethods.net (More useful web services)
ht t p: / / www. xmet hods. net

• UPS OnLine Tools
ht t p: / / www. ups . com/ e_comm_access/ get t ool s_i ndex

• SoapUI (Open Source (free) program for testing/analyzing web services and
converting WSDL to SOAP)

http://www.soapui.org

48

This Presentation

You can download a PDF copy of this presentation from:

http://www.scottklement.com/presentations/

Thank you!

