
Web Programming with RPG

Presented by

Scott Klement
http://www.scottklement.com

© 2006-2009, Scott Klement

“There are 10 types of people in the world.
Those who understand binary, and those who don’t.”

Introduction to

Session
11C

2

Why Why Why WWW?

Why is it important to learn about Web
programming?

• Users are demanding graphical applications.
• Client/server applications are complex and expensive to maintain.
• Web applications are graphical, yet relatively simple to build and

maintain.
• Nothing to install on the PC.
• Everyone already has web access from their desks.
• Easy to deploy applications to the “entire world” if needed.
• Easy to connect your applications to those of other companies.

Many people don’t even know that you can write
Web applications in RPG!

3

Why RPG? Isn’t Java or PHP Better?

• In many System i shops, there’s a lot of RPG talent, and most of the
existing business rules are written in RPG.

• Evolution, not revolution! It’s expensive and time consuming to learn
an entirely new language and way of thinking.

• Java, especially when used through WebSphere requires more
hardware resources than RPG does.

• Many shops, especially small ones, do not need the added features of
WebSphere/PHP, and it’s not worth the added complexity.

• It’s easy to get started with Web programming in RPG. If you find that
you need more, go right ahead and upgrade. In that case, this’ll just be
a stepping stone to the future.

4

Two Aspects of Web Programming

Web programming has two uses:

• Providing web pages for a user to display with a
browser.

We’re all familiar with this, it’s what we see every day when we’re
out surfing the web.

• A means of communication between applications.

Companies can work together to integrate their services into each
other’s applications.

5

HTML Overview

This presentation does not intend to teach HTML in it’s entirety, only to
give you a basic introduction to it.

• Simple text data written to a file.
• Special “tags” modify the way the data is displayed (as a title, heading,

paragraph, etc.)

<html>
<head>

<title>Dead Simple Web Page</title>
</head>
<body>

<h1>Welcome to my simple web site.</h1>

<p>My name is Scott, and this is a simple web site
that I've created for your enjoyment. This web
site doesn't do much.</p>

<p>Here's a picture of my son, Alexander:</p>

</body>

</html>

Start tags look like
this: <head>

End tags look like
this: </head>

6

<title>

<H1>
“heading level 1”

<P>
“paragraph”

“image”

7

What Happened?

http://www.scottklement.com/test.html

http:
The protocol
of the web.

//www.scottklement.com
Server to connect to.

/test.html
Document to

download.

The URL in the browser’s “address” field told it which document you
wanted:

The browser took these steps:
• Connect to the HTTP server (port 80) on www.scottklement.com
• Ask the server for “/test.html”
• The server’s reply contained the HTML document.
• Browser renders the HTML document on the screen.
• In doing that, it sees the request for another URL.

http://www.scottklement.com/AlexDressUp.jpg

The process is repeated to get this picture. Since it this one is a picture,
it displays it where the tag was.

8

What About On-The-Fly Data?

The last example dealt with data that’s always the same. The HTML
document and picture are created once, and when the browser wants
them, they’re downloaded.

But, what if you have data that’s not always the same? Perhaps you
have a database that’s constantly changing – and you want the user’s
request to show the current state of that data?

• Instead of a URL that points to a disk object to download, have it point
to a program to run.

• When run, the program can perform any database access or
calculations that it needs to, and then return the HTML.

• The freshly generated HTML can be sent to the browser.

9

Introduction to CGI

CGI = COMMON GATEWAY INTERFACE

This is a specification for how an HTTP server:
• Can run a program
• Receive input information from the HTTP server
• Write the results back to the HTTP server so the server can send them

back to the browser.

http://www.scottklement.com/cgi-bin/test.pgm

In the server config:
• You designate /cgi-bin as a “script alias”. This tells the server

that when a request is made to something in that directory, it’s a
program that should be run rather than a document to download.

10

Sample Apache Config

ScriptAlias /cgi-bin /QSYS.LIB/WEBAPP.LIB
<Directory /QSYS.LIB/WEBAPP.LIB>

Order Allow,Deny
Allow From all

</Directory>

Notes:
• This is just excerpt from a larger config file. It only depicts the settings for

requests to /cgi-bin .
• ScriptAlias maps /cgi-bin to the WEBAPPlibrary (IFS naming style)
• ScriptAlias not only maps one to the other, it also tells the server that it

should CALL the object rather than download it.

In traditional naming, accessing a *PGM object named TEST in library WEBAPP
would look like this:

WEBAPP/TEST
However, in IFS style naming, you access the same object with:

/QSYS.LIB/WEBAPP.LIB/TEST.PGM

11

Sample “Original HTTP” Config

Exec /cgi-bin/* /QSYS.LIB/WEBAPP.LIB/*

Notes:
• Same as the previous slide.
• Maps /cgi-bin to the WEBAPPlibrary.

Currently, Apache is the recommended server for the iSeries. The Original
server will not run on V5R3 and later.

However, if you are still using the original server, you use the EXEC directive
instead of ScriptAlias

http://www.scottklement.com/cgi-bin/pricelist.pgm

Will now run the RPG program called WEBAPP/PRICELIST

For Either Server

12

Standard Output (1/2)

You now know that a request for /cgi-bin/pricelist.pgm will run a program called
WEBAPP/PRICELIST. That program will read a price list database, and will use it to
generate HTML code for the browser on-the-fly.

To send it to the HTTP server, an RPG writes it’s output to a standard stream called
“Standard Output”. (or, “stdout” for short)

What is Standard Output?
• Commonly used in C programming, Unix programming, MS-DOS programming, Java

programming. Also QSHELL and PASE on the iSeries.
• On those systems, every program has a standard output that normally writes to the

screen.
• Not traditionally used in RPG, but it can be.
• The output can also be redirected to a file.
• The output can be redirected to a pipe that connects it to another program.

That’s how your RPG program sends data to the HTTP server – by sending it to standard
output. When the server ran your program, it connected a pipe so that it’ll be able to read
the standard output data as you’re writing it.

13

Standard Output (2/2)

D QtmhWrStout PR extproc('QtmhWrSto ut')
D DtaVar 32767A options(*varsize) const
D DtaVarLen 10I 0 const
D ErrorCode 8000A options(*varsize)

IBM provides the
QtmhWrStout()
API as a means of
writing data to
standard output.

This shows the
parameter summary
listed in the Information
Center for this API:

Here's a matching
RPG prototype:

14

PriceList Program (1/4)

A R PRICELISTR
A ITEMNO 5P 0
A DESC 25A
A PRICE 5P 2

For example, you might have a price list that you want to publish to the Web. The prices
are stored in the following physical file:

For an RPG program to process this, it'd have to:

• Tell the server what type of data it's returning (HTML in this case, and
not Image, XML, Word Doc, etc.) by writing it to standard out.

• Send "header information" (HTML for the top of the page) to stdout.

• Loop through the PRICELIST file and send each price to stdout.

• Send "footer information" (HTML for the bottom of the page) to stdout.

15

PriceList Program (2/4)

H DFTACTGRP(*NO) BNDDIR('CGIPGM')

FPRICELIST IF E DISK BLOCK(*YES)

D QtmhWrStout PR extproc('QtmhWrStout')
D DtaVar 32767A options(*varsize) const
D DtaVarLen 10I 0 const
D ErrorCode 8000A options(*varsize)

D ErrCode ds qualified
D BytesProv 10I 0 inz(0)
D BytesAvail 10I 0

D CRLF c x'0d25'
D data s 1000A varying

/free

data = 'Content-Type: text/html' + CRLF
+ CRLF

+ '<html>' + CRLF
+ ' <head>' + CRLF
+ ' <title>My Price List</title>' + CRLF
+ ' </head>' + CRLF
+ ' <body>' + CRLF
+ ' <h1>My Price List</h1>' + CRLF
+ ' <table border="1">' + CRLF;

QtmhWrStout(data: %len(data): ErrCode);

Content-Type
specifies the type
of data.

Empty line is
required, and tells
the server you're
done sending it
keywords, and
everything else is
the document
itself.

16

PriceList Program (3/4)

setll *start PriceList;
read PriceList;

dow not %eof(PriceList);
data = '<tr>' +CRLF

+ ' <td>' + %char(ItemNo) + '</td>' +CRLF
+ ' <td>' + Desc + '</td>' +CRLF
+ ' <td>' + %char(Price) + '</td>' +CRLF
+ '</tr>' +CRLF;

QtmhWrStout(data: %len(data): ErrCode);
read PriceList;

enddo;

data = ' </table>' + CRLF
+ ' </body>' + CRLF
+ '</html>' + CRLF;

QtmhWrStout(data: %len(data): ErrCode);

*inlr = *on;

/end-free

Data for each
price:

"Footer"
information:

Notice that the HTML
code is effectively
organized into "chunks"
that are written at the
appropriate time.

They will all be sent to
the browser as one big
document.

The document doesn't
end until your program
does.

17

PriceList Program (4/4)

Each time the
browser is
pointed at the
pricelist program,
it generates this
page with the
current database
values.

18

CGIDEV2

CGIDEV2 is a FREE tool from IBM
• Originally written by Mel Rothman (ex-IBMer)
• Written entirely in RPG.
• Includes source code and lots of examples
• Now supported (billable) from IBM's Client Technology Center (CTC)

CGIDEV2 can be downloaded from the following link:
http://www-03.ibm.com/systems/services/labservices/ library.html

CGIDEV2 provides tools to simplify writing CGI prog rams:
• Take the HTML out of the RPG code, and put it in a separate member.
• Divide HTML into chunks (or "sections")
• Provide strings that are replaced with data from a program (or "HTML variables")

This means that you can:
• Develop your HTML in a separate (HTML design) tool
• Or just type them in Notepad or EDTF!
• Focus on "how things look" separately from focusing on "business logic".
• Get a college "whiz kid" or "web designer" to do the design while you focus on the

business rules.

19

Sample Template File

/$Header
Content-Type: text/html

<html>
<head>

<title>My Price List</title>
</head>
<body>

<h1>My Price List</h1>
<table border="1">

/$EachPrice
<tr>
<td>/%ItemNo%/</td>
<td>/%Desc%/</td>
<td>/%Price%/</td>
</tr>

/$Footer
</table>

</body>
</html>

The following are "section dividers" that
separate the different chunks of HTML:

/$Header
/$EachPrice
/$Footer

The following are "variables" that will have
data supplied by the RPG program:

/%ItemNo%/
/%Desc%/
/%Price%/

If you're able to have someone else do the
design work, you'd simply take their
HTML, slice it into sections, and insert the
variables.

Then you could use their HTML
w/CGIDEV2

This file will be
entered into a PC
tool like Notepad,
then copied to the
IFS of my iSeries.

20

H DFTACTGRP(*NO)
H/copy hspecsbnd
FPRICELIST IF E K DISK
D/copy prototypeb

/free
SetNoDebug(*OFF);
gethtmlIFSMult('/scotts_templates/pricelist.tmpl') ;

wrtsection('Header');

setll *start PriceList;
read PriceList;

dow not %eof(PriceList);
updHtmlVar('ItemNo': %char(ItemNo));
updHtmlVar('Desc' : Desc);
updHtmlVar('Price' : %char(Price));
wrtsection('EachItem');
read PriceList;

enddo;

wrtsection('footer');
wrtsection('*fini');
*INLR = *ON;

/end-free

Price List w/CGIDEV2

Load the HTML
template.

/copy members provided by
CGIDEV2.

Write sections and update
variables as required.

When done, write the special
*FINI section. This tells
CGIDEV2 that you're done.

21

Input From the Browser

So far, all of the examples have focused on writing output from your program to the Web.
For obvious reasons, you sometimes want to get input from the user sitting at the browser.

The way you do this is with the <form> and <input> HTML tags. These create "blanks" on
the screen where the user can type.

The <form> tag shows where the start & end of the form is, as well as telling the browser
where to send the input. The <input> tag represents an input field or graphical device that
gets input from the user. (text=field to type text into, submit=button for submitting form.

22

Input Example HTML
<html>
<body text="black" link="blue" bgcolor="white">

<form action="/cgi-bin/custords.pgm" method="post">
<h1>Show Customer's Orders</h1>
<table border="0">
<tr>

<td align="right">Customer number:</td>
<td align="left"><input type="text" name="custno" maxlength="8" /></td>

</tr>

<tr>
<td align="right">Start Date:</td>
<td align="left"><input type="text" name="start_date" maxlength="10" /></td>

</tr>
<tr>

<td valign="top" align="right">Status:</td>
<td align="left">

<input type="radio" name="status" value="O" checked />Open

<input type="radio" name="status" value="R" />Processing

<input type="radio" name="status" value="I" />Invoiced

<input type="radio" name="status" value="D" />Delivered

<input type="radio" name="status" value="P" />Paid

</td>
</tr>
</table>
<input type="submit" value=" Ok ">

</form>
</body>
</html>

The browser will send the
form's output to
/cgi-bin/custords.pgm

Type="radio"
declares a radio
button.

The input type="text" tags are blanks
for the user to type into.

Type="submit" declares button to
click to submit the form.

23

What the Form Looks Like

<input type="text" name="custno">

<input type="text" name="start_date">

<input type="radio" name="status" value="O" checked >
<input type="radio" name="status" value="R">
<input type="radio" name="status" value="I">
<input type="radio" name="status" value="D">
<input type="radio" name="status" value="P">

<input type="submit" value=" Ok ">

24

What the Form Submits

When the browser sends form data to an HTTP server, it encodes it. The data that's
actually submitted by the form looks like this:

custno=12345678&start_date=01%2F01%2F2006&status=Pcustno=12345678&start_date=01%2F01%2F2006&status=P

• Each variable submitted is separated from the others by the & symbol.
• Each variable is separated from it's value with the = symbol
• Any spaces are converted to + symbols
• Any characters that would have special meanings (such as spaces, &, +, or =) are

encoded as % followed by the hex ASCII code for the character.

If you wanted to handle these variables in your code, you'd have to write a routine that
converted it back to normal. Or, you'd need to call an API that does that for you.

Fortunately, CGIDEV2 makes it easy.
• When you call the zhbGetInput() routine, it reads all the variable info from the browser,

and parses it for you.
• You can then call the zhbGetVar() API each time you want to know a variable's value.

25

Order List Example (1/4)

/$Header
Content-Type: text/html

<html>
<head>

<title>List of Orders</title>
</head>
<body>

<h1>List of Orders</h1>
<table border="1">

<tr>
<td><i>Order Number</i></td>
<td><i>Amount</i></td>
<td><i>Delivery Date</i></td>

</tr>

/$Order
<tr>
<td align="left">/%OrdNo%/</td>
<td align="right">/%Amount%/</td>
<td align="right">/%Date%/</td>
</tr>

/$Footer
</table>

</body>
</html>

/$Error
Content-Type: text/html

<html>
<body>

/%ErrMsg%/

</body>

</html>

26

Order List Example (2/4)
H DFTACTGRP(*NO)

/copy hspecsbnd
FORDDATA UF E K DISK

/copy prototypeb
/copy usec

D savedQuery s 32767A varying
D custno s 8A
D date s D
D status s 1A

/free

SetNoDebug(*OFF);
gethtmlIFSMult('/scotts_templates/custords.tmpl');

qusbprv = 0;
ZhbGetInput(savedQuery: qusec);

custno = zhbGetVar('custno');
status = zhbGetVar('status');

monitor;
date = %date(zhbGetVar('start_date'): *USA/);

on-error;
updHtmlVar('errmsg': 'Invalid start date!');
wrtsection('error');
return;

endmon;

27

Order List Example (3/4)

wrtsection('heading');

setll (custno: status: date) ORDDATA;
reade (custno: status) ORDDATA;

dow not %eof(ORDDATA);
updHtmlVar('ordno': OrderNo);
updHtmlVar('amount': %char(OrderTot));
updHtmlVar('date': %char(DelDate:*USA/));
wrtsection('order');
reade (custno: status) ORDDATA;

enddo;

wrtsection('footer');
wrtsection('*fini');
*inlr=*on;

/end-free

28

Order List Example (4/4)

29

Web Applications
Closing Thoughts

Web applications represent a simple way to put a GUI face on your RPG programs.
There's still the following caveats:

• Most programs need to be re-written to use this.

• If your code is modular so that the business logic is separate from the display
logic, you may only have to re-write part of it.

• Programs that accept input once, and output once will convert easily. For
example, reports.

• CGIDEV2 is free, and it's easy to try Web programming and experiment with it.

30

Web Services (1 of 2)

A Web service is a way of calling programs from other programs. It's very similar in
concept to a CALL command (CALL PGM(GETRATE) PARM(&PARM1 &PARM2)) except
that it makes the call over the World Wide Web.

This is different from CGI because:

• Instead of taking input from an HTML form in a browser, it accepts an XML
document from another program.

• Instead of writing out HTML data to a browser, it writes out XML data for
another program to read.

Imagine being able to call a program on another company's computer! Even if that
company is on the other side of the world!

Think of some of the things you could do...

31

Web Services (2 of 2)

Imagine some scenarios:
• You're writing a program that generates price quotes. Your quotes are in US dollars.

Your customer is in Germany. You can call a program that's located out on the Internet
somewhere to get the current exchange rate for the Euro.

• You're accepting credit cards for payment. After your customer keys a credit card
number into your application, you call a program on your bank's computer to get the
purchase approved instantly.

• You've accepted an order from a customer, and want to ship the goods via UPS. You
can call a program running on UPS's computer system and have it calculate the cost of
the shipment while you wait.

• Later, you can track that same shipment by calling a tracking program on UPS's system.
You can have up-to-the-minute information about where the package is.

These are not just dreams of the future. They are a reality today with Web services.

32

SOAP and XML

Although there's a few different ways of calling web services today, things are becoming
more and more standardized. The industry is standardizing on a technology called SOAP.

SOAP = Simple Object Access Protocol

SOAP is an XML language that describes the parameters that you pass to the programs
that you call. When calling a Web service, there are two SOAP documents -- an input
document that you send to the program you're calling, and an output document that gets
sent back to you.

The format of a SOAP message can be determined from another XML document called a
WSDL (pronounced "wiz-dull") document.

WSDL = Web Services Description Language

A WSDL document will describe the different "programs you can call" (or "operations" you
can perform), as well as the parameters that need to be passed to that operation.

33

Sample WSDL (bottom)

. . .

<portType name="CurrencyConvertorSoap">
<operation name="ConversionRate">

<documentation>
Get conversion rate from one currency to another currency

</documentation>
<input message="tns:ConversionRateSoapIn"/>
<output message="tns:ConversionRateSoapOut"/>

</operation>
</portType>

<binding name="CurrencyConvertorSoap" type="tns:CurrencyConvertorSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>
<operation name="ConversionRate">

<soap:operation soapAction="http://www.webserviceX.NET/ConversionRate"
style="document"/>

</operation>
</binding>

<service name="CurrencyConvertor">
<port name="CurrencyConvertorSoap" binding="tns:CurrencyConvertorSoap">

<soap:address location="http://www.webservicex.net/CurrencyConvertor.asmx"/>
</port>

</service>
</definitions>

Read it from the
bottom up!

Note: I removed the
namespace

identifiers and
encodings to
simplify the

document a little bit.

34

Sample WSDL (top)
<definitions targetNamespace="http://www.webserviceX.NET/">
<types>

<schema>
<element name="ConversionRate">

<complexType><sequence>
<element minOccurs="1" maxOccurs="1" name="FromCurrency" type="Currency"/>
<element minOccurs="1" maxOccurs="1" name="ToCurrency" type="Currency"/>

</sequence></complexType>
</element>
<simpleType name="Currency">

<restriction base="string">
<enumeration value="EUR"/>
<enumeration value="USD"/>

</restriction>
</simpleType>
<element name="ConversionRateResponse">

<complexType><sequence>
<element minOccurs="1" maxOccurs="1" name="ConversionRateResult" type="double"/>

</sequence></complexType>
</element>
<element name="double" type="double"/>

</schema>
</types>

<message name="ConversionRateSoapIn">
<part name="parameters" element="ConversionRate"/>

</message>
<message name="ConversionRateSoapOut">

<part name="parameters" element="ConversionRateResponse"/>
</message>
. . .

Read it from the
bottom up!

In the actual WSDL,
all of the currencies

of the world are
listed here. I

removed them to
simplify the slide.

35

Sample SOAP Documents

<?xml version="1.0"?>
<SOAP:Envelope>

<SOAP:Body>
<ConversionRate>

<FromCurrency>USD</FromCurrency>
<ToCurrency>EUR</ToCurrency>

</ConversionRate>
</SOAP:Body>

</SOAP:Envelope>

Again, I've removed the namespace and encoding information to keep this example
clear and simple. (In a real program, you'd need those to be included as well.)

<?xml version="1.0"?>
<SOAP:Envelope>

<SOAP:Body>
<ConversionRateResponse>

<ConversionRateResult>0.7207</ConversionRateResult>
</ConversionRateResponse>

</SOAP:Body>
</SOAP:Envelope>

In
pu

t M
es

sa
ge

O
ut

pu
t M

es
sa

ge

36

HTTPAPI

Now that you know the XML data that needs to be sent and received, you need a method
of sending that data to the server, and getting it back.

Normally when we use the Web, we use a Web browser. The browser connects to a web
server, issues our request, downloads the result and displays it on the screen.

When making a program-to-program call, however, a browser isn't the right tool. Instead,
you need a tool that knows how to send and receive data from a Web server that can be
integrated right into your RPG programs.

That's what HTTPAPI is for!

• HTTPAPI is a free (open source) tool to act like an HTTP client (the role usually played
by the browser.)

• HTTPAPI was originally written by me (Scott Klement) to assist with a project that I had
back in 2001.

• Since I thought it might be useful to others, I made it free and available to everyone.

http://www.scottklement.com/httpapi/

37

Web Service Consumer (1/4)
H DFTACTGRP(*NO) BNDDIR('LIBHTTP/HTTPAPI')

D EXCHRATE PR ExtPgm('EXCHRATE')
D Country1 3A const
D Country2 3A const
D Amount 15P 5 const
D EXCHRATE PI
D Country1 3A const
D Country2 3A const
D Amount 15P 5 const

/copy libhttp/qrpglesrc,httpapi_h

D Incoming PR
D rate 8F
D depth 10I 0 value
D name 1024A varying const
D path 24576A varying const
D value 32767A varying const
D attrs * dim(32767)
D const options(*varsize)

D SOAP s 32767A varying
D rc s 10I 0
D rate s 8F
D Result s 12P 2
D msg s 50A
D wait s 1A

A program that
uses a Web

Service is called
a "Web Service

Consumer".

The act of calling
a Web service is

referred to as
"consuming a
web service."

38

Web Service Consumer (2/4)

/free
SOAP =

'<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>'
+'<SOAP:Envelope'
+' xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"'
+' xmlns:tns="http://www.webserviceX.NET/">'
+'<SOAP:Body>'
+' <tns:ConversionRate>'
+' <tns:FromCurrency>'+ %trim(Country1) +'</tns:FromCurrency>'
+' <tns:ToCurrency>'+ %trim(Country2) + '</tns:ToCurrency>'
+' </tns:ConversionRate>'
+'</SOAP:Body>'
+'</SOAP:Envelope>';

rc = http_url_post_xml(
'http://www.webservicex.net/CurrencyConvertor.asmx'

: %addr(SOAP) + 2
: %len(SOAP)
: *NULL
: %paddr(Incoming)
: %addr(rate)
: HTTP_TIMEOUT
: HTTP_USERAGENT
: 'text/xml'
: 'http://www.webserviceX.NET/ConversionRate');

Constructing the
SOAP message is

done with a big
EVAL statement.

This routine tells
HTTPAPI to send

the SOAP
message to a

Web server, and
to parse the XML

response.

As HTTPAPI receives the XML
document, it'll call the INCOMING

subpocedure for every XML
element, passing the "rate"

variable as a parameter.

39

Web Service Consumer (3/4)
if (rc <> 1);

msg = http_error();
else;

Result = %dech(Amount * rate: 12: 2);
msg = 'Result = ' + %char(Result);

endif;

dsply msg ' ' wait;

*inlr = *on;

/end-free

P Incoming B
D Incoming PI
D rate 8F
D depth 10I 0 value
D name 1024A varying const
D path 24576A varying const
D value 32767A varying const
D attrs * dim(32767)
D const options(*varsize)

/free
if (name = 'ConversionRateResult');

rate = %float(value);
endif;

/end-free
P E

If an error occurs,
ask HTTPAPI

what the error is.

Display the error
or result on the

screen.

This is called for
every XML element

in the response.

When the element is
a "Conversion Rate

Result" element,
save the value, since

it's the exchange
rate we're looking

for!

40

Web Service Consumer (4/4)

Command Entry
Request level: 1

Previous commands and messages:
> call exchrate parm('USD' 'EUR' 185.50)

DSPLY Result = 133.69

Bottom
Type command, press Enter.
===>

F3=Exit F4=Prompt F9=Retrieve F10=Include det ailed messages
F11=Display full F12=Cancel F13=Information Assistant F24=More keys

Here's a sample of the output from calling the prec eding program:

41

More Information – CGIDEV2

CGIDEV2 is supported by IBM. The home page for CGID EV2 is
http://www-03.ibm.com/systems/services/labservices/ library.html

Tutorials on Web programming with CGIDEV2 are avail able at:
http://www.easy400.net

Scott has written several articles about CGIDEV2 fo r his newsletter:

• CGIDEV2 for XML
http://www.systeminetwork.com/article.cfm?id=51276

• Web programming in RPG parts 1,2,3
http://www.systeminetwork.com/article.cfm?id=51135
http://www.systeminetwork.com/article.cfm?id=51145
http://www.systeminetwork.com/article.cfm?id=51209

• CGIDEV2 for E-mail
http://www.systeminetwork.com/article.cfm?id=51238

42

For More Information

You can download HTTPAPI from Scott's Web site:
http://www.scottklement.com/httpapi/

Most of the documentation for HTTPAPI is in the source code itself.
• Read the comments in the HTTPAPI_H member
• Sample programs called EXAMPLE1- EXAMPLE20

The best place to get help for HTTPAPI is in the mailing list. There's
a link to sign up for this list on Scott's site.

Info about Web Services:
• Web Services: The Next Big Thing by Scott N. Gerard

http://www.systeminetwork.com/Article.cfm?ID=11607
• Will Web Services Serve You? by Aaron Bartell

http://www.systeminetwork.com/Article.cfm?ID=19651
• W3 Consortium

http://www.w3.org and http://www.w3schools.com

43

For More Information

Web Service info, continued…
• RPG as a Web Service Consumer by Scott Klement

http://www.systeminetwork.com/article.cfm?id=52099

• SOAP Message Generator (automatically converts WSDL to SOAP):
http://www.soapclient.com/soapmsg.html

• WebServiceX.net (Many, many useful web services)
http://www.WebServiceX.net

• XMethods.net (More useful web services)
http://www.xmethods.net

• UPS OnLine Tools
http://www.ups.com/content/us/en/bussol/offering/te chnology

/automated_shipping/online_tools.html

44

This Presentation

You can download a PDF copy of this presentation fr om:

http://www.scottklement.com/presentations/

Thank you!

