
RPG Does TCP/IP
(Socket Progamming in RPG IV)

Presented by

Scott Klement
http://www.scottklement.com

© 2007-2015, Scott Klement

“There are 10 types of people in the world.
Those who understand binary, and those who don’t.”

2

Objectives Of This Session

• Understand how to write TCP/IP Client Programs
in RPG

• Understand how to write TCP/IP Server
Programs in RPG

• Find any needed documentation for TCP/IP
programming

This session will not cover the use of TCP/IP tools, such as the IBM i
FTP client, PING or TRACERT commands. It’s purely about building
your own TCP/IP programs from the ground up.

3

Sample Scenarios using TCP/IP

• A custom-designed “thick-client” program. (Windows GUI and RPG back-
end)

• Any place you might have written custom communications (such as ICF
files) in the past can be replaced with a pure TCP/IP solution.

• Server-to-server interfacing. Real-time communication between two back-
end servers (even if they're on different platforms and in different
programming languages.)

• You may want to write your own tools that use standard Internet protocols
such as Telnet, FTP, HTTP, E-mail, etc. You can write your own TCP/IP
tools from the ground up in RPG. -- or invent your own!

• Direct communication with a sign, scale, printer, barcode scanner, etc.

4

TCP/IP is a Suite of Protocols

• IP - Internet Protocol. A low-level protocol that defines how a
datagram is routed across multiple networks. (Not used directly
by applications.)

• ICMP – Internet Control Message Protocol. A low-level protocol to
provide diagnostic/error messages about IP. (Not used directly by
applications.)

• UDP – User Datagram Protocol. Used by applications that want
to create and send datagrams directly. Faster than TCP, but the
operating system does less work for you. You must write code to
split data into packets , verify receipt, verify correct sequence.

• TCP – Transmission Control Protocol. Operating system does
most of the work for you. TCP breaks data into packets, verifies
that they're received (resending if needed), and reassembles
them in correct sequence on the remote side.

There are four main network protocols in the TCP/IP
suite. The name “TCP/IP” is taken from the two most
popular of these protocols.

HTTP, FTP, SMTP,

TN5250, Custom

TCP UDP

ICMP, IP

Ethernet, PPP,
SLIP, etc.

5

The Socket APIs

• The End Point: A socket is the “end point” of TCP/IP communications, much
like a telephone receiver is the “end point” of a telephone conversation.

• Communicate between your Program and IBM i: Your program uses the
socket to tell IBM i what work needs to be done:

�What protocol you want to speak

�Where (address / port) to send the data to

�… and the data to send to the other system.

• A socket is to a network what a file is to a hard drive: When you want to
write data to disk, you don't have to break your data up into disk blocks, or
tell the computer where to move the read/write head. Same thing with
sockets, you just write data to the socket, let TCP work out the details.

TCP/IP programs are written using a suite of Unix-
type APIs called “Socket APIs”.

6

TCP Sockets Work Like a Telephone

• Look up the telephone number and
extension number.
(Look up the IP address and port)

• Pick up the telephone receiver.
(Open a new socket)

• Dial the number
(Connect the socket)

• Talk.
(Send/receive data over the socket)

• Hang up.
(Close the socket)

Client Server
• Create the telephone (sigh)

(Open a new socket.)

• Decide which telephone extension
to wait for.
(Bind the socket to a port.)

• Turn the ringer on.
(Tell socket to listen for connect)

• Wait for a call, then left the receiver.
(Accept a new connection)

• Talk (send/receive)

• Hang up. (close socket)

TCP Socket

7

The GETTIME Program

To demonstrate the concepts in this presentation, I've developed some simple example programs:

GETTIME – client program
• Accept an IP address or Domain name as a parameter.
• Connect to port 8123 on the server (specified in first parm)
• Send the "SEND TIME" command.
• Receive back the time stamp.
• Use DSPLY to display it on the screen.

SHOWTIME – server program
• Wait for a connection on port 8123
• Wait for a command from the client (only supported command is "SEND TIME")
• Send the current time from the system clock.
• Disconnect.

When I call GETTIME, it will produce results like this:

CALL GETTIME PARM('server6.scottklement.com')

DSPLY Server's time is: 2007-04-03-12.19.47.692000

8

Objective 1

HOW TO WRITE A
CLIENT PROGRAM

9

Binary vs. Dotted Addresses

BINARY IP ADDRESS
Computer uses a 4-byte binary number (10U 0 in RPG), such as
x’C0A864C8’

DOTTED IP ADDRESS
People print each byte as a separate number, separated with a "dot".
Example: 192.168.100.200

These represent the same address – just different wa ys of writing it.
When the user gives you a "dotted" IP address, you need a way to
convert it to binary format.

You do that with the inet_addr() API….

10

The inet_addr() API
Convert a “dotted” address to binary

/copy socket_h

D dotted s 15a
D ip_addr s 10u 0

dotted = '192.168.100.200';
ip_addr = inet_addr(%trim(dotted));

// ip_addr is now 3232261320

D inet_addr PR 10U 0 ExtProc('inet _addr')
D char_addr * value options (*string)

The inet_addr() API converts a dotted address to a
binary IP address.

I have a copy book called SOCKET_Hthat contains all of the
prototypes, named constants, and data structures us ed with the
socket APIs. You can download it from my Web site at:

http://www.scottklement.com/presentations/

11

Get IP Address for Domain Name

NAMES NOT NUMBERS!!
Instead of an IP address, the user might give you a name
like:

www.google.com -or- isociety.common.org

CHGTCPDMN HOSTNAME('mycomputer')
DMNNAME('example.com')
HOSTSCHPTY(*LOCAL)
INTNETADR('x.x.x.x')

In order for your system to translate names to numbers, it has to be told where to find
a DNS server. You can specify an IP address for a DNS server on the following
command:

You can run the DNS server on your IBM i box, but you don't have to. IBM i is quite
happy to use a server running on Windows, Unix, etc. You can even use one provided
by your ISP. Just put the correct IP address in the INTNETADR parm above.

12

Gethostbyname() API
Look up (“resolve”) the IP address for a host name

/copy socket_h
D host s 100A inz('isociet y.common.org')
D ip_addr s 10u 0

. . .
p_hostent = gethostbyname(%trim(host));
if (p_hostent = *null);

errMsg = 'Host not found!';
else;

ip_addr = h_addr;
endif;

D gethostbyname PR * extProc('geth ostbyname')
D HostName * value options (*string)

D hostent DS Based(p_hoste nt)
D h_name *
D h_aliases *
D h_addrtype 5I 0
D h_length 5I 0
D h_addrlist *
D p_h_addr S * Based(h_addrl ist)
D h_addr S 10U 0 Based(p_h_add r)

gethostbyname() definition from SOCKET_H:

Using gethostbyname() in your RPG program:

Performs lookup in BOTH
host table and DNS.

13

Handle Both IP Address and DNS

C *ENTRY PLIST
C PARM host

/free

ip_addr = inet_addr(%trim(host));

if (ip_addr = INADDR_NONE);
p_hostent = gethostbyname(%trim(host));
if (p_hostent = *null);

errMsg = 'Host not found!'
else;

ip_addr = h_addr;
endif;

endif;

� First try inet_addr() to see if it's a valid IP address.

� If not valid, inet_addr() will return INADDR_NONE

� Then try gethostbyname().

14

Ports

� An IP address gets you to the right computer (actually, network interface!)

� How do you get to the right application (program) within that computer?

� Port numbers are sent in each packet to distinguish each program from the others.

� Servers usually use a “well-known” port number so clients know who to connect to.
It's always the same for that particular server.

� Kinda like a telephone extension number. (dial 1-800-KLEMENT, then you hear "if
you know your party's extension, please dial it now…)

Think about this:

FTP is always 21.
TELNET is always 23.
SMTP (email) is always 25.
HTTP is always 80
Ports above 4000 are used for "custom programming"
…etc…

The SHOWADDR (time server) example program will run on port 8123.

15

The socket() API
Pick Up the Phone / Create Socket

Once you know who you’re connecting to, you need a socket to work with.

From SOCKET_H:

D socket PR 10I 0 ExtProc('sock et')
D AddrFamily 10I 0 Value
D SocketType 10I 0 Value
D Protocol 10I 0 Value

Sockets can be used with many different types of ne tworks (IPv4, IPv6, IPX/SPX,
UNIX domain). You have to tell the system what typ e you want.

� AddrFamily = address family (protocol family), i.e. which protocol suite to use .
• AF_INET means TCP/IP (IPv4)
• AF_INET6 means TCP/IP (IPv6)

� SocketType = Type of socket
• SOCK_STREAM = stream socket (TCP)
• SOCK_DGRAM = datagram socket (UDP)

� Protocol = Which protocol within the family.
• IPPROTO_IP = Use TCP or UDP based on the SocketType parameter.

16

socket() API Sample Code

/copy socket_h

D mySock s 10i 0
. . .

mySock = socket(AF_INET: SOCK_STREAM: IPPROTO_IP) ;
if (mySock = -1);

// handle error
endif;

The socket() API returns a “socket descriptor”, or -1 if an error occurs.

SOCKET DESCRIPTOR:

Because you can have many simultaneous sockets, and they don’t have a name
(like the filenames you’d put on an F-spec) you nee d a way to keep track of each
socket you open.

The socket() API returns a number that IBM i uses i nternally to keep it straight
from other connections.

You must save that number into a variable, and pass it to subsequent APIs to tell
them which socket to operate on.

17

The connect() API
Dial Phone / Connect Socket

A socket address data structure (IPv4 version shown) stores info about the
address and port to connect to. From SOCKET_H:

D sockaddr_in DS based(p_socka ddr)
D sin_Family 5I 0
D sin_Port 5U 0
D sin_addr 10U 0
D sin_zero 8A

D connect PR 10I 0 ExtProc('conn ect')
D Sock_Desc 10I 0 VALUE
D p_SockAddr * VALUE
D AddressLen 10I 0 VALUE

� Sock_Desc = the descriptor (the number returned by the socket() API)
� p_SockAddr = Address (%ADDR) of the socket address data structure.
� AddressLen = The size (%SIZE) of the socket address in bytes.

Returns 0 if connected successfully, or -1 if an er ror occurs.

� Sin_Family identifies which "address family" (or pr otocol suite = TCP/IP)
� Sin_Zero should always be hex zeroes.

18

connect() API Sample Code

/copy socket_h
D connto ds likeds(sockad dr_in)
D rc s 10i 0

connto = *allx'00';
connto.sin_family = AF_INET; // Type of address
connto.sin_addr = IP_Addr; // Result of DNS look up
connto.sin_port = 8123 // port number

rc = connect(mySock: %addr(connto): %size(connto));
if (rc = -1);

// error has occurred
endif;

In your RPG program:

Most errors in a TCP/IP client program occur during this API, because it's the first
place where bytes are sent/received from the remote computer – so if there's
something wrong with the connection, this is the fi rst place you'll notice it!

19

The send() and recv() APIs
Talk / Hold a Conversation

• Sock_Desc = descriptor (value returned by socket() API)
• p_buffer = address of variable to send/receive.
• BufferLen = length of data to send, or size of variable to receive data into.
• Flags = Almost never used. Pass 0 for this parameter.

When receiving: How much data depends on how much is immediately available –
NOT like a record. Variable won’t always be filled, or match the exact size that was
written on the other end.

D Send PR 10I 0 ExtProc('send ')
D Sock_Desc 10I 0 Value
D p_Buffer * Value
D BufferLen 10I 0 Value
D Flags 10I 0 Value

D Recv PR 10I 0 ExtProc('recv ')
D Sock_Desc 10I 0 Value
D p_Buffer * Value
D BufferLen 10I 0 Value
D Flags 10I 0 Value

20

Translating Data

D QDCXLATE PR ExtPgm('QDCXL ATE')
D len 5p 0 const
D data 32767A options(*vars ize)
D table 10a constv

QDCXLATE is a system API that can translate data according to a table. IBM provides
many tables, but for simple applications, I typically use these:

• QTCPASC = translate EBCDIC to ASCII
• QTCPEBC = translate ASCII to EBCDIC

Since most network applications communicate in ASCII, you’ll need to be able to
convert ASCII to EBCDIC and vice-versa.

QDCXLATE is a simple way to convert data, suitable for simple applications. The
iconv() API is a better solution, but much more complicated, so I use QDCXLATE in my
examples.

21

Sample Code to Send Data

D cmd s 20a
D len s 10i 0
D CRLF c x'0d25‘

. . .
cmd = 'SEND TIME' + CRLF;
QDCXLATE(%len(%trimr(cmd)): cmd: 'QTCPASC');

len = send(mySock: %addr(cmd): %len(%trimr(cmd)): 0);
if (len < %len(%trimr(cmd)));

errMsg = 'Error during send.';
endif;

This is code from a custom application that synchronizes time between two servers.
After connecting, the client sends a command to the server that says ‘SEND TIME’.

There’s nothing special about the string “SEND TIME”, it could be any data I wanted to
send to the server program. In this case, the server program waits for the words
“SEND TIME” and when it receives them, it sends it’s current time stamp.

22

Sample Code to Receive Data

D tempvar s 26a
D response s 26a varying

. . .
response = '';
dou %len(response) = 26;

len = recv(mySock: %addr(tempvar): %size(tempvar): 0);
if (len = -1);

errMsg = 'Error during recv.';
endif;

response = response + %subst(tempvar:1:len);
enddo;

len = %len(response);
tempvar = response;
QDCXLATE(len : tempvar: 'QTCPEBC');
response = %subst(tempvar: 1: len);

dsply ('Server''s time is: ' + response);

The time stamp the server sends is always 26 bytes long, but depending on the network speed, it
may not all arrive in one recv() call. I use a loop to add the data together til I have all 26 bytes.

23

The close() API
Hang Up the Phone

.

/if not defined(CLOSE_PROTOTYPE)
D Close PR 10I 0 ExtProc('clos e')
D Sock_Desc 10I 0 Value

/define CLOSE_PROTOTYPE
/endif

• Sock_Desc = descriptor (value returned by socket() API)

Returns 0 when successful, -1 upon failure.

Sockets will not be closed automatically, even if y ou end your program with
*INLR = *ON. You must remember to close them with this API!

callp close(mySock);

Tip: Sockets cannot be re-used. Once an error occurs, y ou must close the
socket, and create a new one to try again.

24

Error Handling w/errno

Unix-type APIs report errors by setting an “error number”. The _ _errno() procedure
can be used to retrieve a pointer to an error number. This error number is used with all
C APIs and Unix-type APIs, not only sockets.

D sys_errno PR * ExtProc('__er rno')
D errno s 10i 0 based(ptr)
. . .

mySock = socket(AF_INET: SOCK_STREAM: IPPROTO_IP);
if (mySock = -1);

ptr = sys_errno();
errMsg = 'Error number ' + %char(errno) + ' in sock et() API';

endif;

The error number can be converted to a message using the strerror() API. For
example:

rc = connect(mySock: %addr(connto): %size(connto));
if (rc = -1);

ptr = sys_errno();
errMsg = %str(strerror(errno));

endif;

I put error handling stuff in the ERRNO_H member. Like SOCKET_H, you can
download it from my Web site at http://www.scottklement.com/presentations/

25

Error Constants

There are named constants that correspond to each possible value of “errno”. Here’s
a partial list (from ERRNO_H). These are the error codes listed in the IBM manuals.

* Address already in use.
D EADDRINUSE C 3420

* Address not available.
D EADDRNOTAVAIL C 3421

* The type of socket is not supported in this addr ess family.
D EAFNOSUPPORT C 3422

* Operation already in progress.
D EALREADY C 3423

* Connection ended abnormally.
D ECONNABORTED C 3424

* A remote host refused an attempted connect opera tion
D ECONNREFUSED C 3425

* A connection with a remote socket was reset by t hat socket.
D ECONNRESET C 3426

* Operation requires destination address.
D EDESTADDRREQ C 3427

* A remote host is not available.
D EHOSTDOWN C 3428

26

Error Numbers Used in Program

In this example, a different message is supplied for some errors to make them clearer
to the user. It illustrates how you might use an error constant in your program.

repeat = *off;
dou not repeat;

rc = connect(mySock: %addr(connto): %size(connto)) ;
if (rc = -1);

ptr = sys_errno();
select;
when errno = EINTR;

repeat = *on;
when errno = ECONNREFUSED;

errMsg = ‘No server program running on remote compu ter.’;
when errno = EHOSTDOWN;

errMsg = ‘Remote computer is down’;
other;

errMsg = %str(strerror(errno));
endsl;
exsr LogError;

endif;

enddo;

27

Objective 2

HOW TO WRITE A
SERVER PROGRAM

28

The Easy Way to Write a Server

Due to time constraints, I'll only describe the "ea sy way" to
create a TCP server in this talk.

Rather than doing all the work yourself, use INETD.
You configure it:
• Port server runs on (using service table)
• Type of socket (tcp or udp)
• Name of your program.

INETD will:
1. Sit and wait for a client to connect.
2. Create a new socket for the new connection. (It will always be #0)
3. Submit your program to batch (with the socket already connected) to talk to the

client.

29

Setting Up Your Service

For time "TIMEDEMO" server (the one that returns the current time stamp for synching
the clock) to work, I need to register it with inetd. To do that, I have to follow these
steps:

• Add my new custom service to the system's service table.

ADDSRVTBLE SERVICE('timedemo') PORT(8123) PROTOCOL('tcp')

• Edit inetd's configuration file to tell it which services to listen on, and which programs
to submit for each service.

EDTF '/QIBM/USERDATA/OS400/INETD/inetd.conf'

Unfortunately, IBM does not provide a GUI tool (that I know of) for configuring INETD.
Plus, the documentation is a bit sketchy. However, it's the same as the inetd programs
that are ubiquitos on Unix systems, so the manual pages for Unix explain the setup:

Here's a link to the one for FreeBSD (open source Unix for the PC):

http://www.freebsd.org/cgi/man.cgi?query=inetd.conf&format=html

30

Service Table

Every system has a table (file) that lets you cross reference well-
known services to port numbers.

� Not distributed across the Internet like DNS.
� More like the HOSTS table – just a file on each computer.

WRKSRVTBLE
command:

31

Configuring INETD

Basic services
#echo stream tcp nowait QTCP *INTERNAL
#discard stream tcp nowait QTCP *INTERNAL
#chargen stream tcp nowait QTCP *INTERNAL
#daytime stream tcp nowait QTCP *INTERNAL
#time stream tcp nowait QTCP *INTERNAL
#echo dgram udp wait QTCP *INTERNAL
#discard dgram udp wait QTCP *INTERNAL
#chargen dgram udp wait QTCP *INTERNAL
#daytime dgram udp wait QTCP *INTERNAL
#time dgram udp wait QTCP *INTERNAL

timedemo stream tcp nowait QUSER /QSYS.LIB/ MYLIB.LIB/ SHOWTIME.PGM

• Lines that begin with # are comments.
• Timedemo is the service name for port 8123
• Socket type is "stream tcp"
• INETD will not wait for my program to complete after submitting it.
• My program will run with the authority of the QUSER user profile.
• My program is called SHOWTIME in library MYLIB

ENDTCPSVR SERVER(*INETD)
STRTCPSVR SERVER(*INETD)

Use these commands
to restart INETD to

activate new config:

32

SHOWTIME Program (1 of 3)
The program that gets submitted by INETD

D errMsg s 52a
D cmd s 20a varying
D buf s 20a
D data s 26a
D len s 10i 0
D mySock s 10i 0

/free

mySock = 0;

exsr RecvCmd;

if cmd = 'SEND TIME';
exsr SendTime;

endif;

callp close(0);

*INLR = *ON;
return;

INETD will always pass you the connected socket as descriptor #0. You do not
have to call socket() to create it, it has been done for you by INETD.

33

SHOWTIME Program (2 of 3)
The program that gets submitted by INETD

begsr RecvCmd;

cmd = '';
dou (%len(cmd)>1 and %subst(cmd:%len(cmd)-1:2) = x '0d0a');

len = recv(mySock: %addr(buf): %size(buf): 0);
if (len = -1);

errMsg = 'Error during recv.';
leavesr;

endif;

cmd = cmd + %subst(buf: 1: len);
enddo;

// Translate to EBCDIC and strip off CRLF

buf = cmd;
QDCXLATE(%len(cmd) : buf: 'QTCPEBC');
cmd = %subst(buf:1:%len(cmd));
%len(cmd) = %len(cmd) - 2;

endsr;

34

SHOWTIME Program (3 of 3)
The program that gets submitted by INETD

begsr SendTime;

// send timestamp:

data = %char(%timestamp(): *ISO);
QDCXLATE(%len(data): data: 'QTCPASC');

len = send(mySock: %addr(data): %size(data): 0);
if (len = -1);

errMsg = 'Error during send.';
callp close(mySock);
leavesr;

endif;

endsr;

CALL GETTIME PARM('server6.scottklement.com')

DSPLY Server's time is: 2007-04-03-12.19.47.692000

35

Application-Level Protocols

Once you have the basics of connecting, binding, accepting and spawning written
once, you can create a template, and do it the same way every time.

The hard part is knowing what needs to be sent and received!

Just as different people speak different languages, so do computer programs. Each
one has it's own set of commands and expected responses. This is called an
"application-level protocol."

For the most part, the only thing that changes from one application to another is what
gets sent and received!

RED TEXT = Send by Server

BLACK TEXT = Sent by Client

36

Example Application: SMTP E-mail

220 mail.scottklement.com is ready!
HELO iseries.example.com
250 mail.scottklement.com Hello iseries.example.com [1.2.3.4],
pleased to meet you
MAIL FROM:<sklement@systeminetwork.com>
250 2.1.0 <sklement@systeminetwork.com>... Sender o k
RCPT TO:<example@scottklement.com>
250 2.1.5 <example@scottklement.com>... Recipient o k
DATA
354 Enter mail, end with "." on a line by itself
From: Scott Klement <sklement@systeminetwork.com>
To: Example Person <example@scottklement.com>
Subject: Hello there.

SOCKETS RULE! YEAH!
.
250 2.0.0 l337fG6x032243 Message accepted for deliv ery
QUIT
221 2.0.0 grungy.dstorm.net closing connection

37

Example Application: HTTP

GET /index.html HTTP/1.1
Host: www.scottklement.com:80
Connection: close

HTTP/1.1 200 OK
Date: Tue, 03 Apr 2007 07:49:09 GMT
Server: Apache/2.0.52
Content-Length: 8294
Connection: close
Content-Type: text/html; charset=ISO-8859-1

<!doctype html public "-//w3c//dtd html 4.0 transit ional//en">
<html>
<head>

<meta name="Author" content="Scott Klement">
<title>Scott Klement's web page</title>
.
.

</html>

38

Objective 3

WHERE TO FIND
DOCUMENTATION

39

Where To Find Application Docs

The only difference between the ones I've shown you and other protocols is the exact
commands and responses. They all pretty much work the same.

All of the Internet Standard Protocols are documented by Request For Comments
(RFC) documents. Here are some of the more popular ones:

Protocol Description RFC
HTTP Hypertext Transport Protocol (Web) 2616

FTP File Transfer Protocol 959

SMTP Simple Mail Transport Protocol 2821

POP3 Post Office Protocol 1939

Telnet Basic Terminal Emulation 854-861

TN5250 5250 emulation over Telnet 1205

These are all publicly available. To get started, go to

http://www.faqs.org/rfcs

40

More Information

IBM Provides documentation in the Information Cente r – but it's oriented towards the ILE C
programming language. In RPG, you must write your own:
• Prototypes
• Data structures
• Constants
Or download them from my site! http://www.scottklement.com/presentations/

The official IBM documentation for the socket API i s found under:
Programming / APIs / APIs by Category / Unix-type / Sockets

Scott has a (V4, fixed-format oriented) tutorial ab out sockets on his Web site:
http://www.scottklement.com/rpg/socktut/

Scott has also written articles in his newsletter:
Introduction: article ID 51701
Error handling: article ID 51720
Server programming: article ID 51809
Server w/INETD: article ID 53182
Timing Out Sockets: article ID 53809

Tip: To read these articles,
key the article ID into the
search box, in the upper-
right corner of
www.SystemiNetwork.com

41

More Information

In System iNEWS magazine:

May 2006 issue, "TCP/IP and Sockets in RPG"
http://www.systeminetwork.com/article/rpg-programmi ng/tcpip-and-sockets-in-rpg-600

Sept 2006 issue, "SSL Sockets from RPG? Of Course You Can!"
http://www.systeminetwork.com/article/rpg-programmi ng/ssl-sockets-from-rpg-of-course-you-

can-709

Scott's open source RPG software, written with sock ets:

HTTPAPI (HTTP protocol)
http://www.scottklement.com/httpapi/

FTPAPI (FTP protocol)
http://www.scottklement.com/ftpapi/

TN5250 (written in C for Linux, not in RPG)
http://tn5250.sourceforge.net

42

This Presentation

You can download a PDF copy of this presentation fr om:

http://www.scottklement.com/presentations/

Thank you!

