
RPG User Defined Functions (UDFs)

and Table Functions (UDTFs)

Presented by

Scott Klement
http://www.scottklement.com

© 2009-2016, Scott Klement

“There are 10 types of people in the world.
Those who understand binary, and those who don’t.”

2

Objectives Of This Session

• What is a User defined function (UDF)?

• Why would I consider using one?

• UDF info and examples

• What is a User defined table function (UDTF)?

• UDTF info and examples

• Links to more information

Although UDFs can be written in many languages, including SQL
itself, this talk will focus on writing them in RPG.

3

SQL Routines

SQL Supports the ability to write routines, callable as an SQL statement, or
as part of a larger SQL statement.

• Procedures ("Stored Procedures")
�To be used via the CALL SQL command.
�Input/Output parameters and result sets.
�"Subroutine" for SQL.

• Triggers
�Fire automatically when an event happens.

• Functions (…this is the one I'll talk about …)
�Called as part of a select, insert, update, etc.
�Take input as parameters.
�Return output as a return value – or a table ("file").

4

What's a UDF (1 of 2)

A UDF is a function that takes input parameters, and returns an output
(variable or table) – you can write them in SQL or in "external" languages like
RPG, Cobol, C, CL, Java and more…

Think: Calling an RPG subprocedure from SQL!

Select empno, lastname, firstname, midinit, hiredat e
from EMPMAST

order by hiredate

This query can read a file, but what about calculated data?

• File has date in YYYYMMDD format, but you need it in MM/DD/YYYY
format

• File has the date hired, but you need to know the years of service.

5

What's a UDF (2 of 2)

Select empno, lastname, firstname, midinit,
toMdy(hiredate), yearsActive(hiredate,termdate)

from EMPMAST
order by hiredate

toMdy() calls an RPG subprocedure, passes hiredate as a parameter.
� RPG routine outputs the date in MM/DD/YYYY format.

yearsActive() calls an RPG subprocedure, passes hiredate as a parameter
� RPG routine figures out how many years since that date, and returns it.

Output of select will contain the data from the RPG program

6

Why Use a UDF?

They are useful, because they:

• Simplify SQL statements

• Let you re-use existing RPG business logic

• Easy plumbing for app integration across a network

• There are things RPG can do that SQL cannot

7

SQL Can't Do Everything, Right?

SQL (by itself) can't:

• Check if a (non-file) object exists

• Read a data area

L i k e L i k e L i k e L i k e

W h a t?!W h a t?!W h a t?!W h a t?!

• Work with the IFS

• Write HTML to a browser

• Send a text message to your
cell phone (or for that matter,
to QSYSOPR)

SQL and RPG make a great team. RPG is
right for some things, and SQL is right for
some things!

8

But, My #1 Reason Is….

UDFs let me write business logic in RPG,
and use it anywhere.

any place I can run an SQL statement.

• Windows apps (.NET, VB, C++, etc)

• PHP apps (IBM i, Linux, Windows)

• Java apps (anywhere)

• ILE RPG, Cobol, C

• Even OPM

• Even Microsoft Office!

I’ll take RPG UDFS for the win, please!

9

Start With an RPG Subprocedure

…it can also be a program, but I find that less intu itive.

You can have multiple procedures in the module if y ou like.

P toMdy B export
D toMdy PI 10a
D ymd 8p 0 const

D retval s 10a
/free

monitor;
retval = %char(%date(ymd:*iso) : *USA);

on-error;
retval = 'ERROR';

endmon;

return retval;
/end-free

P E

10

Compile & Bind Into a SRVPGM

Build a service program from the module:

CRTRPGMOD MODULE(mylib/UDFDEMO1) (or PDM #15)

SRCFILE(*libl/QRPGLESRC)

CRTSRVPGM SRVPGM(mylib/UDFDEMO1)

You now have routines that are callable from ILE
languages – but how do you call them from elsewhere?

11

Create An SQL Function

Create Function toMdy (ymd Decimal(8,0))
returns char(10)
language rpgle
deterministic
no sql
external name 'mylib/UDFDEMO1(TOMDY)'
parameter style general
program type sub

Think of "Create Function" as SQL's version of a prototype. It gives SQL
all of the details needed to call your subprocedure.

This is an SQL statement.
You can run it from any place that SQL is available… STRSQL, IBM i
Navigator, RUNSQLSTM, from your code, etc. It doesn't matter.

Personally, I like putting them into a source member, and running with
RUNSQLSTM. Then you can repeat it when you need to.

12

What Does Create Function Do?

• The "prototype" information needed to call your routine is saved into the
database.

• No disk object is produced. (It's not like a compiler.)

• Info about parameters and how to call is saved into files in QSYS2 library

File SYSROUTINES= info about SQL routines
File SYSFUNCS = info about SQL functions

The Drop Function SQL statement removes these definitions from the files.

13

Quick Create Function Syntax Overview

�toMdy = function name (name you use in SQL statements)
�ymd = parameter name. Decimal(8,0) is the data type
�Returns char(10) describes the return value

Create Function toMdy (ymd Decimal(8,0))
returns char(10)

. . .

. . .
language rpgle
deterministic
no sql
external name 'mylib/UDFDEMO1(TOMDY)'
parameter style general
program type sub

�Options that control how your routine gets called.
(more info coming up…)

Programming language to
call -- controls how parms

are passed.

Routine to call – name of
*SRVPGM object and

subprocedure.

14

External Name and Program Type

Remember:
• The name after the words 'Create Function' is the name you'll use in your SQL statement.
• "External Name" is the name of the RPG object that SQL will call (under the covers.)

To call a subprocedure, code it like this:

external name 'lib/srvpgm (subprocedure-name) '
program type sub

external name 'lib/pgm'
program type main

NOTE: To call a *PGM from a user-defined function, you must also use a parameter style
that can return values from a parameter list. (Either SQL or DB2SQL) -- More later!

To call a program, code this:

Program type SUB is the
default for a UDF.,

15

Specifying the Library List

External name cannot include *LIBL.However, if you do not specify quote marks, you can
leave off the library name, and it'll use the library list.

external name srvpgm (subprocedure-name)
program type sub

external name pgm
program type main

HOWEVER: This is not recommended!
• Can cause problems with high-availability software
• Creates a "double search" scenario. Once when your SQL statement searches for the

UDF, and then a second search when the UDF searches for your PGM/SRVPGM.
• The SQL portion ("the UDF") and the RPG portion ("the external object") should operate as

one unit, and therefore "locking the two together" isn't bad.
• You can still locate the UDF via library list (in fact, this is the default behavior in *SYS

naming convention), but when the UDF finds the RPG code, it should be explicit.

- Or -

16

Contains SQL?

Remember: Your UDF is run from an SQL statement.
� If your RPG uses SQL, it’s a statement inside another statement!

SQL can handle this, but it needs to know how you plan to use SQL

• NO SQL (fastest)
Doesn’t use any SQL whatsoever. If it tries to use SQL, an error will occur.

• CONTAINS SQL
Can use only a very restrictive number of SQL statements that neither read nor update
files. (such as COMMIT/ROLLBACK or SET with various variables.)

• READS SQL DATA
Reads data, such as a SELECT or FETCH statements. No updates allowed.

• MODIFIES SQL DATA (slowest)
All SQL statements allowed, including INSERT, UPDATE, CREATE TABLE, etc.

If you specify too little access for what you're doing, you'll get an error. If you're not sure
what level is required, see Appendix B of the SQL Reference manual, it lists all SQL
statements and which one of the above is required.

17

Deterministic?

Democritus was one of the first philosophers to
anticipate determinism, and many consider him the
father of modern science.

But has nothing to do with RPG or SQL.

In SQL, “deterministic” means that if a function is
called with the same parameter values, it’ll
always return the same result.

toMdy(20091231) returns 12/31/2009

Every time you call toMdy() and pass
20091231, it’ll always return 12/31/2009.

That means SQL doesn’t have to call it
repeatedly if the parameter value doesn’t change.
It can remember the last answer – and not call
your function. (Improves performance.)

By default, functions are NOT DETERMINISTIC
so specify the DETERMINISTIC option if your
routine would benefit from it…

18

Parameter Styles (1 of 2)

The previous example used the “GENERAL” parameter style
• Sometimes called “SIMPLE CALL”

• The parameters passed from the SQL statement match what’s passed to your
program.

• The return value from your program matches what’s returned back to the SQL
statement.

Other parameter styles are a little different.
• The SQL statement looks the same. Same parameter(s) are passed when

calling the UDF.
• There will be additional parameters passed from the database engine to your

RPG code, however.
• Null indicators, Error handling fields, and more.
• In some styles, the return value is in the parameter list. (So *PGMs will work.)
• The exact parameters passed will depend on which parameter style is used.

19

Parameter Styles (2 of 2)

• GENERAL(only works with *SRVPGM calls) (SIMPLE CALL is an alias)
• What you see is what you get.
• There are no extra parameters passed from SQL to your *srvpgm, just the

ones given on the SQL statement.
• The return value of the subprocedure becomes the return value of the UDF.

• GENERAL WITH NULLS(only with *SRVPGM calls)
• Same as GENERAL except that extra parameters are passed from SQL to

RPG containing null indicators for all parameters and return values..

• SQL (or DB2SQL which is the same thing!)
• Subprocedure return values aren’t used, instead return value is passed in the

parameter list.
• Null indicators are passed in the parameter list for all parameters and return

values.
• Various additional parms for error handling, and other stuff. (more later!)
• Supports calling programs as well as subprocedures

There are others, but these are the ones that are useful from an RPG program

20

YearsActive in GENERAL Parameter Style

Create Function yearsActive (
hiredate Decimal(8, 0),
termdate Decimal(8, 0)

)
returns Integer
language rpgle
not deterministic
no sql
external name 'mylib/UDFDEMO1(COUNTYEARS)'
parameter style general ;

Two parameters,
separated by commas,

just like you'd have with
CREATE TABLE (etc)

Parameter style is
GENERAL

The RPG subprocedure name
doesn't have to match the SQL

name. (It can, but it doesn't
have to.) In this case, the RPG
name is CountYears, but the

SQL name is yearsActive

21

CountYears w/GENERAL style
P countYears B export
D countYears PI 10i 0
D hireDate 8p 0 const
D termDate 8p 0 const

D myTerm s d inz(*sys)
D retval s 10i 0

/free

monitor;
if (termDate <> 0);

myTerm = %date(termDate:*iso);
endif;
retval = %diff(myTerm

: %date(hireDate : *iso)
: *YEARS);

on-error;
retval = -1;

endmon;

return retval;
/end-free

P E

0 is a special value in our employee master file that means “never terminated”

Any invalid date (in either
parameter) will return an

error of -1.

Not the best way of
handling errors!!

Date defaults to the
current system date.

To specify no date, 0 must
be passed. That’s okay in
this case, but not in every

UDF!

22

Testing your UDFs from iNav

iNav’s Run SQL
Scripts is an easy
way to test the UDF.

If employee worked
from 2004-2009, it’s
5 years.

I can easily change
the numbers to test
different dates.

Tip: SYSIBM/SYSDUMMY1is an IBM-supplied file that’s intended for
testing UDFs. It makes it easy to make ad-hoc calls to your UDF.

23

Limitations of the GENERAL Style

• General cannot work with programs because programs
cannot return a value.

• Can’t report errors in a standard way. Have to roll-your-own
error handling.

• Doesn’t provide support for null indicators on the
parameters – so special values must be used. What if your
database is using nulls?

24

SQL (or DB2SQL) Parameter Style

• First X parameters are the parameters you specified on Create Function.

• A parameter for the return value.

• One parameter for each input parameter’s null indicator

• One parameter for the return value’s null indicator

• The SQLSTATE (SQLSTT) value, CHAR(5)

• Fully qualified function name VARCHAR(517)

• Specific Name VARCHAR(128)

• Error Message Text – VARCHAR(70)

• There are 3 optional parameters, not discussed here…

1. Scratchpad

2. Call type

3. DBINFO structure

25

YearsActive in SQL Parameter Style

Create Function yearsActiveSql (
hiredate Decimal(8, 0),
termdate Decimal(8, 0)

)
returns Integer
language rpgle
not deterministic
no sql
external name 'mylib/UDFDEMO1(YEARSACTIVESQL)'
parameter style sql;

Notice….
2 parameters

1 return value

.

.
External name 'mylib/UDFPROGRAM'

Parameter style is now
SQL SQL parameter style can

call programs instead of
procedures. To do that,

simply leave off the
parenthesis and

procedure name. d

26

RPG Code w/SQL Parameter Style (1 of 2)

P yearsActiveSql B export
D yearsActiveSql PI
D hireDate 8p 0 const
D termDate 8p 0 const
D yearCount 10i 0
D n_hireDate 5i 0 const
D n_termDate 5i 0 const
D n_yearCount 5i 0
D sqlstt 5a
D function 517a varying
D specific 128a varying
D errorMsg 70a varying

D myTerm s d inz(*sys)
D PARM_NULL C CONST(-1)

/free

monitor;
if (n_termDate<>PARM_NULL and termDate <> 0);

myTerm = %date(termDate:*iso);
endif;

on-error;
sqlstt = '38999';
errorMsg = 'Invalid termination date!';
return;

endmon;

Input parameters

Returned value

Null indicators for
each input
parameter

Null indicator for
return value

SQL State and error
message let you
return your own

SQL errors

27

if n_hireDate = PARM_NULL;
sqlstt = '38998';
errorMsg = 'Hire date cannot be null!';
return;

endif;

monitor;
yearCount = %diff(myTerm

: %date(hireDate : *iso)
: *YEARS);

on-error;
sqlstt = '38997';
errorMsg = 'Invalid hire date!';

endmon;

return;
/end-free

P E

RPG Code w/SQL Parameter Style (2 of 2)

Select yearsActiveSql(hireDate, termDate) from EM PMAST

Even though parms to the RPG have changed, the SQL call is the same…

28

iNav Has a Wizard for UDFs
helps you write the 'create function' statement

Under databases /
Schemas,

Right-click library
And choose "new"

29

That Was an "External Scalar" UDF

What I've shown you so far is an external scalar UDF.
• External – means it's written in an HLL (not in SQL)
• Scalar – returns a single field value.
• Typically takes the place of a field value on a SELECT staement
• Can also be used in WHERE clause on SELECT, UPDATE, DELETE, etc.

(but beware performance – forces a table scan…)
• Basically anyplace you'd have put a "field value"

What if you wanted to return many values?
• An "array" of values?
• Like a result set – like you'd have with a stored procedure?
• Or perhaps it's easier to visualize as a "temporary file".

To do that, you need an "External Table" function…

30

User Defined Table Function

Although the technical name is "External table function", people, articles and
books frequently refer to table functions as UDTF:

Table functions are:
• Also defined with the Create Function SQL Statement
• Return the contents of a (temporary) table (SQL name for "file")
• Works like an array, multiple rows (records) with the same fields.
• Called from a SELECT statement (takes the place of a FILE)
• Usually used like a stored procedure's with a result set – but can do more.

User Defined Table Function

31

Table Function vs. Stored Procedure

Much has been written about using stored procedures as a means to call
RPG business logic in an MVC environment (or other environment where a
GUI front-end wants to call existing business logic.)

Thoughts on using Table Functions, instead:
• Slightly more difficult to code (at first, anyway!)
• Parameter list is input only.
• Can return data in result set to all languages
• Can use SELECT statement to do stuff to result set (more info later…)

Advantages of stored procedures:
• Easy to code
• Can return data in parameter list (not so useful for arrays)
• Can return data in a result set (Prior to IBM i 7.1, it was only to ODBC,

JDBC or CLI based code. In 7.1, embedded SQL, also.)

32

When Would You Use UDTF?

Any time you would've previously created a subfile.
(Or equivalent web page)

• Natural way to return "rows" of data that repeat.

• Built-in capability to sort (ORDER BY) the rows

• Built-in capability to filter (WHERE) the rows

• Built-in capability to total up (SUM) the rows.

Since they're callable from embedded SQL, they can
even be used to add this sort of capability to green-
screen applications!

33

Existing Report

Customer: 4760
Date: 04/09/2009

ItemNo Description Qty UOM Weight Cost
---------- ------------------------- --------- --- ---- ------- ----------

7895 CHESY-GRIL GM SKLS 5-1 6" 11 BXS 110.00 21.89
1891 TURKEY BREAST ROLL 26#BOX 4 BXS 107.53 8.76
2050 CHICKEN BREAST 10# CW BX 12 BXS 12.66 29.88
1894 SMK TURKY BRST LOG 26#CW 9 BXS 213.63 19.71
6970 SMK 25% HAM ROUND 35#CW 4 BXS 154.25 7.92
3261 KLEMENT FS COTTO 25# EW 3 BXS 75.00 4.77
2393 GAR PEP BF C-OFF IN 13#BX 4 BXS 54.66 11.96
8063 CKD BR SLDR PATY 1.5OZ10# 1 BXS 10.00 0.00
2053 CHICKEN ROLL 5#PC-10#BOX 2 BXS 20.00 4.38

Code the business logic as a UDTF, and I can re-use this
report as part of any program!

34

Create Function for UDTF

Create Function CustSales(CustNo Decimal(4, 0),
Date Decimal(8, 0))

Returns Table
(

itemNo Char(10),
desc Char(25),
Qty Decimal(9, 0),
Unit Char(3),
Weight Decimal(11, 2),
Cost Decimal(9, 2)

)
external name 'my-lib/UDTFDEMO1(CUSTSALES)'
language rpgle
parameter style db2sql
no sql
not deterministic
disallow parallel;

"Returns Table" is how
you tell SQL that your

function returns a table
instead of a scalar

DB2SQL is the only
allowed parameter style

You must list the columns
(fields) in your returned

table.

Currently "disallow
parallel" is required. May
change in future release?

35

DB2SQL Parameter Style for Table Function

DB2SQL Parameter Style is the only one currently supported for UDTFs –
and is very very similar to the SQL Parameter Style used with a scalar
function.

• One RPG parameter for each input parameter (CustNo & Date)
• One RPG parameter for each column (field) returned in a single record.
• One null indicator parameter for each input parameter.
• One null indicator parameter for each column returned in a single record.
• SQL State for handing errors, CHAR(5)
• Fully-qualified function name VARCHAR(517)
• Specific Name VARCHAR(128)
• Error message VARCHAR(70)
• Call type – an integer (10I 0) to tell which “event”.

-2=first call*, -1=open, 0=fetch, 1=close, 2=final call*
(* first call & final call are only used if you specify the “final call” option on the

create function statement.)

36

How a UDTF is Called

SQL calls your routine
with CallType = OPEN

SQL calls your routine
with CallType=FETCH

SQL State
is 02000?

SQL Outputs one row
(record) to calling

SELECT statement.

SQL calls your routine
with CallType=CLOSE

Yes

No

Start

End

How multiple
records can be

returned from one
parameter list

NOTE: I omitted error
handling to keep the

chart simpler.

37

RPG Code for CustSales (1 of 6)

P CustSales b export
D CustSales pi
D CustNo 4p 0 const
D Date 8p 0 const
D itemNo 10a
D desc 25a
D qty 9p 0
D unit 3a
D weight 11p 2
D cost 9p 2
D n_CustNo 5i 0 const
D n_date 5i 0 const
D n_ItemNo 5i 0
D n_Desc 5i 0
D n_Qty 5i 0
D n_Unit 5i 0
D n_Weight 5i 0
D n_Cost 5i 0
D SQLSTT 5a
D Function 517a varying const
D Specific 128a varying const
D errorMsg 70a varying
D CallType 10i 0 const

Two input parms are first

Null indicators for input
parms and output

columns

The columns of the
returned file.

Call Type lets SQL
notify if it's the
Open, Fetch or

Close event.

38

RPG Code for CustSales (2 of 6)

D CALL_OPEN C CONST(-1)
D CALL_FETCH C CONST(0)
D CALL_CLOSE C CONST(1)
D PARM_NULL C CONST(-1)
D PARM_NOTNULL C CONST(0)

/free

if n_Date=PARM_NULL or n_CustNo=PARM_NULL;
SQLSTT = '38999';
errorMsg = 'Both CUSTNO and DATE are manditory';
return;

endif;

select;
when CallType = CALL_OPEN;

exsr doOpen;
when CallType = CALL_FETCH;

exsr doFetch;
when CallType = CALL_CLOSE;

exsr doClose;
*INLR = *ON;

endsl;

This routine requires non-
null parameters.

This routine will be
called with OPEN first,

then with FETCH
repeated for every row,

and finally CLOSE.

39

RPG Code for CustSales (3 of 6)

begsr doOpen;
if not %open(CUSTMAS);

open CUSTMAS;
endif;
if not %open(ITMMAST);

open ITMMAST;
endif;
if not %open(ORDBYCUS);

open ORDBYCUS;
endif;

chain (CustNo) CUSTMAS;
if not %found;

SQLSTT='38998';
errorMsg = 'Unknown customer';
return;

endif;

setll (CustNo:Date) ORDBYCUS;
endsr;

Move to the start of the
list of "rows" that this

UDTF will return.

40

RPG Code for CustSales (4 of 6)

begsr doFetch;
reade (CustNo:Date) ORDBYCUS;
if %eof;

SQLSTT='02000';
return;

endif;

ItemNo = ocItem;
Qty = ocQty;
cost = ocPric * ocQty;

chain (%dec(ItemNo:5:0)) ITMMAST;
if not %found;

SQLSTT='38998';
errorMsg = 'Unknown item found in list';
return;

endif;

Desc = imDesc;

Set SQLSTT to 02000 to
tell SQL when you're done

returning rows.

If you forget this your
program will be called over

and over again in an
endless loop!

41

RPG Code for CustSales (5 of 6)

select;
when ocUnit = 'L';

Unit = 'Lbs';
Weight = Qty;

when ocUnit = 'B';
Unit = 'Bxs';
Weight = Qty * imLbBx;

when ocUnit = 'P';
Unit = 'Pcs';
Weight = Qty * imLbPc;

when ocUnit = 'Z';
Unit = 'Plt';
Weight = Qty * imLbPl;

endsl;

Cost = Cost * cuDPct;
endsr;

Your business logic can be anything
you like. In this case, I'm calculating
the weight, unit of measure and cost.

I can do any sort of RPG Calculations
I need here….

42

RPG Code for CustSales (6 of 6)

begsr doClose;
close *ALL;

endsr;

/end-free
P E

You might think of these the way you think of the RPG
Cycle.

…The fetch subroutine is called once for each record…

• Called once with CallType=OPEN. You do whatever you'd traditionally do
in *INZSR.

• Called many times with CallType=FETCH – each time you use the
parameters to return one record. Return '02000' to signal the end.

• Finally called with CallType=CLOSE.

43

When Else Would You Use UDTF?

You must use TABLE() to tell
SQL that it's a table function.

You must use "as" (in this
example, "as t").

44

Use SQL’s Built-In Functions To “Do More”

You can use functions like
SUM() or AVG() on your UDTF as

well. No need to write logic

45

Other “Do More” Ideas

Only show orders over 500 lbs:

select item, desc, qty from table(CustSales(:CustN o, :Date)) as x
where weight > 500.00

Loading data to be displayed in a table (subfile), and want user to be able to sort
by clicking the column?

Select item, desc, qty from table(CustSales(:CustN o, :Date)) as y
order by case

when :ColNo = '1' then item
when :ColNo = ‘2' then desc
when :ColNo = ‘3' then qty

end

Search the Product Description:

Select item, desc, qty from table(CustSales(:CustN o, :Date)) as z
where desc like '%ITAL%'

46

Example: Calling UDTF from RPG

D C1 ds
D Itemno 10a
D desc 25a
D qty 9p 0
D Unit 3a
D weight 11p 2
D cost 9p 2

/free
exec SQL declare C1 cursor for

select itemno, desc, qty, unit, weight, cost
from table(CustSales(:CustNo, :Date)) as c

order by ItemNo ;

exec SQL open C1;
exec SQL fetch next from C1 into :C1;
dow sqlstt='00000';

... Do something with fetched data here...

exec SQL fetch next from C1 into :C1;
enddo;

exec SQL close C1;

It's not different from any other
SELECT statement in embedded

SQL!

You can take advantage of stuff
like WHERE and ORDER BY to

filter the output…

47

Example: Calling UDTF from PHP

$conn = db2_connect("", "", "");

$sql = "select itemno, desc, qty, unit, weight, cos t "
. "from table(CustSales("
. db2_escape_string($_GET['custno']) . ", "
. db2_escape_string($_GET['date']) . ")) as c "
. "order by ItemNo";

$stmt = db2_exec($conn, $sql);
while (($row = db2_fetch_assoc($stmt))) {

echo '<tr>'
. '<td>' . $row['ITEMNO'] . '</td>'
. '<td>' . $row['DESC'] . '</td>'
. '<td>' . $row['QTY'] . '</td>'
. '<td>' . $row['UNIT'] . '</td>'
. '<td>' . $row['WEIGHT'] . '</td>'
. '<td>' . $row['COST'] . '</td>'
. '</tr>';

}

48

More Information – UDFs

In System iNEWS magazine (ProVIP membership, or pri nt copy):

March 2006, Sharon L. Hoffman, “Unleash the Power o f SQL Functions”
http://iprodeveloper.com/rpg-programming/unleash-po wer-sql-functions

August 2007, Lynne Noll, “Calling RPG from SQL: Ext ernal UDFs to Extend SQL”
http://iprodeveloper.com/rpg-programming/calling-rp g-sql-external-udfs-extend-sql

In System iNetwork Programming Tips newsletter (fre e):

July 29, 2004, Scott Klement, “SQL User Defined Fun ctions in RPG"
http://iprodeveloper.com/rpg-programming/sql-user-d efined-functions-rpg

49

More Information – UDTFs

In System iNEWS magazine (ProVIP membership, or prin t copy):

January, 2007, Kent Milligan & David Andruchuk, “UDT Fs: the Unsung Function”
http://iprodeveloper.com/database/udtfs-unsung-db2- function

January, 2009, Jagannath Lenka, “Use a UDTF and SQL to Query XML Files”
http://iprodeveloper.com/rpg-programming/use-udtf-a nd-sql-query-xml-files

In System iNetwork Programming Tips newsletter (fre e):

February 8, 2007, Jean-Paul LaMontre,
“Build a New Interface to Legacy Applications with S QL UDTFs”
http://iprodeveloper.com/rpg-programming/build-new- interface-legacy-applications-sql-udtfs

May 24, 2007, Scott Klement, “A UDTF For IFS Directo ries”
http://iprodeveloper.com/rpg-programming/udtf-ifs-d irectories
http://iprodeveloper.com/rpg-programming/udtf-recur sive-ifs-directories

June 11, 2009, Scott Klement "UDTFs and Subfiles Ma ke a Great Pair
http://iprodeveloper.com/rpg-programming/udtfs-and- subfiles-make-great-pair

50

This Presentation

You can download a PDF copy of this presentation fr om:

http://www.scottklement.com/presentations/

Thank you!

