
- Page 1 -

HTTPAPI and NTLM

Using NTLM Authentication with HTTPAPI

Status of this document

Date: 25.10.2012
Version: 1.6

Preface

The authentication schemes supported by HTTPAPI are BASIC and DIGEST. These
are the most common authentication methods used for HTTP transactions. Starting
with HTTPAPI v1.25beta3, NTLM authentication, which is often used by Microsoft’s
IIS servers, is also supported.

This document describes how to use NTLM authentication with HTTPAPI.

Prerequisites

A C compiler is required to compile the MD4C4 module. If there is no C compiler
available, module MD4C4 is replaced by the RPG module MD4R4, which slightly
decreases performance.

The minimum OS release level is V5R3M0.

References

Microsoft links:

NTLM Protocol NT LAN Manager (NTLM) Authentication Protocol Specification

[MS-NLMP] NT LAN Manager (NTLM) Authentication Protocol Specification (pdf)

[MS-NTHT] NTLM Authentication Scheme for HTTP (pdf included in the zip file)

Third party links:

davenport The NTLM Authentication Protocol and Security Support Provider

http://msdn.microsoft.com/en-us/library/cc236621%28prot.20%29.aspx
http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/%5BMS-NLMP%5D.pdf
http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/Windows_Server_Protocols.zip
http://davenport.sourceforge.net/ntlm.html%23type3MessageExample

- Page 2 -

Using NTLM

Basically there are no differences between using BASIC or DIGEST and NTLM
authentication.

Once that your GET or POST operations ends with a 401 authentication error you

should call http_getAuth() as usually. Make sure to pass the new and optional

parameter “isNtlm”, which is set to *ON in case the server requires NTLM

authentication:

rc = http_url_get(...);

if (rc <> 1);

 http_error(err);

 if (err = HTTP_NDAUTH);

 if (http_getAuth(isBasic: isDigest: realm: isNtlm) = 0);

 select;

 when (isNtlm);

 http_setAuth(HTTP_AUTH_NTLM

 : getUser(): getPassword());

 when (isDigest);

 http_setAuth(HTTP_AUTH_MD5_DIGEST

 : getUser(): getPassword());

 other;

 http_setAuth(HTTP_AUTH_BASIC

 : getUser(): getPassword());

 endsl;

 rc = http_url_get(...);

 endif;

 endif;

endif;

In the following example (Win7, IIS 7.5) the server supports BASIC and NTLM
authentication and therefore it is up to the client to decide which authentication
scheme to use. Based on the code fragment above it would choose NTLM which is
more secure than BASIC authentication:

POST /HelloWorld.asmx HTTP/1.1

Host: 10.115.14.91

User-Agent: http-api/1.24

Content-Length: 227

Content-Type: text/xml

SOAPAction: "http://tempuri.org/HelloWorld"

sendraw(): entered

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope ...></soapenv:Envelope>

recvresp(): entered

HTTP/1.1 401 Unauthorized

Content-Type: text/html

Server: Microsoft-IIS/7.5

WWW-Authenticate: Basic realm="Test"

WWW-Authenticate: Negotiate

WWW-Authenticate: NTLM

X-Powered-By: ASP.NET

- Page 3 -

BASIC authentication is less secure because username and password are not
encrypted. They are sent over the wire as a combined Base64 encoded string.

DIGEST and NTLM authentication are more secure because they use hashes when
sending the password to the server.

Realm

Also notice that NTLM actually does not use a realm at all. Instead of an empty
realm, the NTLM authentication module returns the host name as the realm value.

The NTLM module always returns the host name as a substitute of the realm.

Domain

On the other hand NTLM knows something that is called a “domain”. A user is
assigned to a domain just the way your email address belongs to a domain. Since
BASIC and DIGEST authentication do not use a domain at all, HTTPAPI does not
provide any option to specify a domain for authentication.

Usually there is no need to specify the domain because in most cases the server
belongs to the same domain as the users who use the services of the server.

But in case you need to specify a domain you can prefix the user name with the
domain name, separated by a backslash as shown here:

domain\username

Or you can use the following format:

username@domain

A problem you may be faced with might be, that HTTPAPI restricts the length of the
user name to 80 characters, which might be too short to take a domain and a user
name. You can get around that problem by specifying the user name and password
in the URL as shown here:

http://domain\username:password@the.hostname.com/index.html

- Page 4 -

LAN Manager Compatibility Modes

The LAN Manager Compatibility Mode is controlled by variable

‘g_LMCompatibilty’ of module NTLMR4.

The default mode is NTLMv2. Beside NTLMv2 the following modes are supported:

0 Sends NTLMv1 responses. That may also include the cryptographically-weak
LM response.
(Flags: NTLMSSP_NEGOTIATE_NT_ONLY + NTLMSSP_NEGOTIATE_NTLM2)

1 Sends NTLMv1 responses but the cryptographically-weak LM response is
excluded. The communication fails when the server does not support

NT_ONLY or NTLM2.

(Flags: NTLMSSP_NEGOTIATE_NT_ONLY + NTLMSSP_NEGOTIATE_NTLM2)

2 Sends NTLMv1 responses but enforces NTLM2.
(Flags: NTLMSSP_NEGOTIATE_NTLM2)

3 Sends NTLMv2 responses. Recommended default mode.

NTLM Protocol

In contrast to BASIC and DIGEST authentication NTLM authenticates a connection
and not a request. Since the NTLM authentication process is more expensive than
BASIC or DIGEST authentication, it is recommended to use a persistent connection
and no single GET or POST request in case multiple requests have to be sent to the
server.

HTTPAPI exposes a bunch of procedures all starting with http_persist_* to

manage persistent connections.

BASIC/DIGEST Handshake

BASIC or DIGEST authentication requires a total of 4 messages between the client
and server to get a file from the server.

GET /basic/index.html HTTP/1.1

Since the client is not yet authorized the server returns a 401 “Unauthorized” status
code along with a “WWW-Authenticate” header to let the client know the supported
authentication scheme:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Basic realm="Basic Authentication"

Now the client retrieves the user credentials and resends the same request enriched
with an “Authorisation” header:

GET /basic/index.html HTTP/1.1

Authorization: Basic YWRtaW46bXlTZWNyZXQ=

Eventually the server verifies the user credentials and returns the requested resource
along with a 200 “OK” status code:

HTTP/1.1 200 OK

- Page 5 -

NTLM Handshake

NTLM however requires a total of 6 messages to get the first resource from the
server. Again the communication starts with an initial request for a resource:

POST /HelloWorld.asmx HTTP/1.1

The server returns a 401 “Unauthorized” status code along with a “WWW-
Authenticate” header requesting NTLM authentication:

WWW-Authenticate: NTLM

Now the two additional messages come into play to negotiate the authentication
details. First the client sends a NEGOTIATE message to the server:

GET /HelloWorld.asmx HTTP/1.1

Authorization: NTLM <base64-encoded type-1-message>

The server response to that with a CHALLENGE message:

HTTP/1.1 401 Unauthorized

Authorization: NTLM <base64-encoded type-2-message>

Eventually the client uses an AUTHENTICATE (Type-3) message to get the resource
from the server:

POST /HelloWorld.asmx HTTP/1.1

Authorization: NTLM <base64-encoded type-3-message>

If everything is fine, the server returns the requested resource to the client:

HTTP/1.1 200 OK

From now on the client can continue requesting resources as long as the connection
is established without going through the complete authentication process.

Please have in mind that connections are not persistent when using HTTPAPI’s GET
or POST procedures. The only way to establish a persistent connection with

HTTPAPI is to use the http_persist_* procedures which are slightly more

complex than http_url_get() or http_url_get().

- Page 6 -

Debugging NTLM Authentication Headers

Debugging connection problems always starts with the HTTP API debug log. The
HTTP API debug log contains the complete HTTP data flow that was exchanged
between the client and the server. Sometimes you may need to know the content of
the NTLM authentication headers, e.g. you may be asked about the NTLM
negotiating flags that were used. These headers are Base64 encoded data that is not
easy to analyse.

For that the “NTLM Message Inspector” comes into play. The NTLM Message
Inspector lets you easily look at the content of a given NTLM authentication header. It
is shipped as a self-executing jar file:

NTLMMessageInspector.jar

Double click the jar file to start the inspector. If that does not work, make sure you
have a JRE 1.6 or higher installed and try to start it from the command line:

java -cp NTLMMessageInspector.jar

de.tools400.net.ntlm.analyzer.NTLMMessageInspector

When the inspector has been started, copy the authentication header in question into
the input field “NTLM authentication header”. You do not necessarily need to remove
the “Authorization: NTLM” prefix from the header. Just paste the complete line as
shown in the example below:

GET /ntlm.html HTTP/1.1

Host: 10.115.14.91:80

User-Agent: http-api/1.24

Authorization: NTLM TlRMTVNTUAABAAAAByIAAAAAAAAAAAAACgAKACAAAABXQTAyMTE1MDAy

The input field is cleared and the result is shown below.

- Page 7 -

Example: Persistent Connection

This example demonstrates how to call a web service twice, storing the response
SOAP messages in a single stream file. The complete source code is shipped with
the NTLM package.

URL = 'http://' + Job_getTcpIpAddr() + '/HelloWorld.asmx';

IFS = '/home/raddatz/httpapi_example37.xml';

// Open output file

fd = open(IFS: O_WRONLY + O_TRUNC + O_CREAT + O_CCSID: 511: 1208);

// Produce SOAP message

postData =

 '<soapenv:Envelope +

 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" +

 xmlns:tem="http://tempuri.org/">+

 <soapenv:Header/>+

 <soapenv:Body>+

 <tem:HelloWorld/>+

 </soapenv:Body>+

 </soapenv:Envelope>';

// Open persistent connection

pComm = http_persist_open(URL);

// Set credentials

http_setauth(HTTP_AUTH_NTLM: user: password);

dou '1';

 // Call web service

 if (http_persist_post(pComm: URL: 0: *null

 : %addr(postData)+2: %len(postData)

 : fd: %paddr('write')) = -1);

 leave;

 endif;

 // Call web serviceonce more

 if (http_persist_post(pComm: URL: 0: *null

 : %addr(postData)+2: %len(postData)

 : fd: %paddr('write')) = -1);

 leave;

 endif;

enddo;

// Close http connection

http_persist_close(pComm);

// Close output file

callp close(fd);

- Page 8 -

Sample “HelloWorld” Web Service:

You can easily set up a web service with NTLM authentication. On a Windows PC
just install and start the IIS service and drop the following file into folder “wwwroot”:

HelloWorld.asmx

<%@ WebService Language="C#"

Class="ProgWS.Ch02.HelloWorldService" %>

using System.Web.Services;

namespace ProgWS.Ch02

{

 public class HelloWorldService: WebService

 {

 [WebMethod]

 public string HelloWorld()

 {

 return "Hello World";

 }

 }

}

Refer to Installing IIS on Windows 7 for a brief description of how to install IIS 7.5 on
Windows 7.

- Page 9 -

Installing IIS on Windows 7

The following description is part of the Microsoft TechNet Library at
http://technet.microsoft.com/en-us/library/cc731911.aspx:

By default, IIS 7.5 is not installed on Windows® 7. You can install IIS by clicking
Windows Features in Advanced Options under Programs in Control Panel.

You can perform this procedure using the user interface (UI) or a script.

1. Click Start and then click Control Panel.
2. In Control Panel, click Programs and then click Turn Windows features on

or off.
3. In the Windows Features dialog box, click Internet Information Services

and then click OK.

Sorry for the German screen shot. I do not have an English Windows 7.

http://technet.microsoft.com/en-us/library/cc731911.aspx

- Page 10 -

Make sure to turn off „Anonymous Authentication“ and to enable “Windows
Authentication.

1. Click Start and then click Control Panel.
2. In Control Panel, click System and Security and then click Administrative

Tools.
3. In the Administrative Tools window, double-click Internet Information

Services (IIS) Manager.

(http://technet.microsoft.com/en-us/library/cc770472%28v=ws.10%29.aspx)

(http://technet.microsoft.com/en-us/library/cc754628%28v=ws.10%29.aspx)

Sorry for the German screen shots. I do not have an English Windows 7.

http://technet.microsoft.com/en-us/library/cc770472%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/cc754628%28v=ws.10%29.aspx

- Page 11 -

NTLM Proxy Authentication

Currently NTLM proxy authentication is not supported by the NTLM extension of
HTTPAPI. The reason is that I do not have a proxy server that uses NTLM
authentication and therefore cannot test it.

- Page 12 -

Examples

EXAMPLE25 This example demonstrates how to use http_url_get() to get a
web page that is protected by NTLM authentication.

EXAMPLE26 This example demonstrates how to use http_persist_get() to get
a web page that is protected by NTLM authentication. The
advantage of this example is that you can call http_persist_get()
multiple times once that you passed the authentication process.

EXAMPLE27 This example demonstrates how to use http_persist_get() to get
a web page that is protected by NTLM authentication. This time
http_setauth() is directly called after http_persist_open() to
minimize the overhead of the authentication process.

EXAMPLE35 This example demonstrates how to use http_url_post() to call a
web service using NTLM authentication.

EXAMPLE37 This example demonstrates how to use http_persist_post() to call
a web service using NTLM authentication.

Your comments are important to me! Any comments sent to me are greatly
appreciated.

thomas.raddatz@tools400.de

