
1

Parameters and Prototypes

Presented by

Scott Klement
http://www.scottklement.com

© 2006-2007, Scott Klement

“There are 10 types of people in the world.
Those who understand binary, and those who don’ t.”

2

Who are you?

• Klement Sausage Co, Inc.
IT Manager and Senior Programmer

http://www.klements.com

• System iNEWS magazine
Technical Editor (also, author)

http://www.iseriesnetwork.com

• System iNetwork Programming Tips
e-Newsletter Editor

http://www.iseriesnetwork.com/provipcenter/

• Speaker
User Groups, COMMON, and RPG Summit

• Award Winner
Recipient of a 2005 iSeries Innovation Award (by IBM and COMMON)

Recipient of the 2005 Gary Guthrie Award for Excellence in Technical Writing (by System iNEWS)

ASBPE Awards 2006 Western Region Silver Medalist for Feature Series (RPG and the IFS)

COMMON Speaker of Merit

Scott Klement’s qualifications:

3

Why talk about parameters?

• Parameters are the cornerstone of modern programming!

• Without parameters, ILE is nothing.

• Without parameters, Object-Oriented code doesn’t work.

• They are much more versatile than older techniques like the
LDA.

• Parameters are more important today than ever
before!

• Too many System i programmers don’t
understand how parameters work!

• There are some recent features that are worth learning.

There are many reasons that parameters are an
important tool for today’s programmer.

4

Two Way Parameters (1 of 2)

Parameters between programs are more valuable in i5/OS than they are on a
Windows or Unix system because they let you pass data both ways. You can
use them to supply input values, but you can also use them to return information.

On other systems, they're input-only.

The two-way parameter is achieved using "shared memory".

When one program calls another, the only thing that’s passed between them is
an address in the computer’s memory where the parameter starts. Nothing else
is passed.

• Allows two-way.

• Is very efficient (only 16 bytes have to be passed)

5

Two Way Parameters (2 of 2)

PGM
DCL VAR(&MYNBR) TYPE(* DEC) LEN(5 0)
CHGVAR VAR(&MYNBR) VALUE(54321)
CALL PGM(TESTPGM) PARM(&MYNBR)

ENDPGM

PGM PARM(&COOLNUM)
DCL VAR(&COOLNUM) TYPE(* DEC) LEN(5 0)
CHGVAR VAR(&COOLNUM) VALUE(1234)

ENDPGM

The DCL statement asks
the OS for 3 bytes of
memory. The OS replies
with an "address 1000".

The PARM statement tells
TESTPGM that there’s one
parameter, and that it’s in
location 1000.

The &COOLNUM variable
is put in address 1000
because it's in the space
provided for parameter one.

Your computer’s memory is shared by everything running on it, so the operating system has
to keep track of which spaces are in use, and which ones are available.

Since the first program is still referencing area 1000, it sees the new value.

6

What about the command line?

CALL PGM(TESTPGM) PARM(18)
CALL PGM(TESTPGM) PARM(' WONKAVI SI ON')

If parameters are passed by sharing the address of the variables, what happens
� When you call from a command line, where there aren't variables?
� When you pass a literal on the CALL statement?

� When you use an API like QCMDEXC where all the parameters are together in
one variable?

� The operating system creates temporary variables for your parameters.
� It passes the addresses of those temporary variables.
� Since you didn't specify any variable size, it makes one up according to

these rules:
1. Numeric variables are always "packed" (*DEC) and 15,5
2. Character variables are 32 chars long, and padded with blanks
3. If a character variable is more than 32 bytes, the exact length of the parameter value is

used.

7

Command Line Examples (1/2)

CALL PGM(TESTPGM) PARM(18)

CALL PGM(TESTPGM) PARM(' HELLO')

CALL PGM(TESTPGM) PARM(' A VERY VERY VERY VERY
VERY LONG STRI NG')

Numbers will be 15,5

(Positions 1000-1007)

This string is 5 chars long,
so QCMD will ask for 32
characters, the first 5 will
be HELLO, the remaining
27 will be blank.

(Pos 1000-1031)

This string is 38 chars long,
and so will be a 38
character parameter with no
padding.

(Pos 1000-1037)

Remember, it will ask the operating system for memory, just as avariable did.

8

Command Line Examples (2/2)

PGM PARM(&MSG)
DCL VAR(&MSG) TYPE(* CHAR) LEN(30)
SNDMSG MSG(&MSG) TOUSR(QSYSOPR)

ENDPGM

PGM PARM(&MSG)

DCL VAR(&MSG) TYPE(* CHAR) LEN(80)

SNDPGMMSG MSGI D(CPF9897) TOMSGQ(* EXT) +

MSGTYPE(* STATUS) MSGDTA(&MSG)
ENDPGM

This’ ll work from the
command line, since 30 is
less than 32.

This might be a problem,
since 80 is more than 32.
You have to type at least 80
characters (not including
trailing spaces) or you’ ll be
viewing memory that’s not
part of what was passed
from the command line.

9

Look Out, It’s a Trick!

FQSYSPRT O F 132 PRI NTER

D Dat a ds
D Name 10A
D Addr ess 30A

c cal l ' GETNAME'
c par m Name

c except
c eval * i nl r = * on

OQSYSPRT E
O ' Name='
O Name
O +3 ' Addr ess='
O Addr ess

D Name s 15A

C * ENTRY PLI ST
C PARM Name

C eval Name = ' Scot t C Kl ement '
c r et ur n

Name=Scot t C Kl Addr ess=ement

Position 1000-1009

Position 1010-1039

Position 1000-1014

10

Like a Data Structure?

D Mai nSt or age ds

.... lots of other stuff here....

D pgm1_dat a 1000 1039

D pgm1_name 1000 1009

D pgm1_addr ess 1010 1039

D pgm2_name 1000 1014

.... lots of other stuff here....

A data structure isn’ t actually used by the operating system. However,
thinking of it this way might make it easier to understand. Think of your
computer’s memory as one big data structure (billions of bytes long!)

11

The Problem

I deliberately used a data structure for name and address so I could control
the memory that followed the name parameter. What if I hadn’t done that?
What would’ve been in positions 1010-1014?

• Maybe unused memory (problem goes unnoticed!)
• Maybe another variable in my program.
• Maybe a variable in another program!
• Maybe a variable used by the operating system!
• Maybe memory that I’m not allowed to use!

WHY DIDN’T IT WARN ME?

How could it? Each program doesn’t know how the other program
works! They can’t read each other’s code… Remember, the only
thing they pass to one another is an address!

12

The Solution

The solution is to code the “GETNAME” program with a
program interface and prototype.
A Program/Procedure Interface (PI) is:
• Like an * ENTRY PLI ST (but better!)
• Requires a matching prototype to work.
• The replacement for * ENTRY PLI ST in free-format.

A Prototype (PR) is:
• A “blueprint” for making a call.
• It contains the name of the program to be called.
• It tells the compiler which parameters that program needs.
• The compiler can then make sure that the parms match.

The prototype helps make the calling of a program self-documenting.

A prototype also adds a lot of “convienience” functionality, as I’ll demonstrate in a bit.
All of IBM’s new functionality related to parms since V3R2 has gone into prototypes!

13

Saved by the Prototype

D Get Name PR Ext Pgm(‘ GETNAME’)
D name 15A

/ copy sour cel i b/ pr ot ot ypes, get name
D Get Name PI
D Name 15A

C eval Name = ' Scot t C Kl ement '
c r et ur n

One member for the prototype (SOURCELIB/PROTOTYPE,GETNAME)

The prototype must match the Program Interface (PI) in the program:

/ copy sour cel i b/ pr ot ot ypes, get name

D Dat a ds
D Name 10A
D Addr ess 30A

.

.
c cal l p Get Name(Name)

If the caller uses the prototype, it’ll protect him from mistakes:

RNF7535 The t ype and at t r i but es of par amet er 1 do not
mat ch t hose of t he pr ot ot ype.

14

Prototypes for Programs

A prototype is very much like a parameter list (PLIST), but is newer and
has a lot of additional features. You can use a prototype to call a
program, a subprocedure, or a Java class.

D Cal cTax PR EXTPGM(‘ CALCTAX’)
D St at e 2A
D Amount 9P 2

Program NameFirst Parameter Second ParameterPrototype Name

• Prototype name
This is the name you’ll use when using the prototype to make a call. By default, it’s also the
name of the subprocedure that it calls. Add EXTPGM to make it call a program.

• First Parameter
The first parameter to the procedure (name is for documentation, no variable is declared.)

• Second Parameter
You can have as many parameters as you like, from 0-255 to a program, or 0-399 to a
procedure.

• External Program Name

15

Calling Older Programs

You can use prototypes to call RPG III programs, RPG IV programs that still use
*ENTRY PLIST, or even programs written in other languages (CL, COBOL, C).

D Get I p PR Ext Pgm(‘ GETI P’)
D Devi ce 10A
D Addr ess 15A

D MyDev s 10A
D MyAddr s 15A

/ f r ee
MyDev = ‘ DSP01’ ;
cal l p Get I p(MyDev : MyAddr) ;

/ end- f r ee

That’ll work even though GETIP is a CL program. It would also work if GETIP
was an RPG program that used *ENTRY PLIST (in RPG III or RPG IV).

You only need a PI
for input (*ENTRY
PLIST) parameters,

not when calling
something else.

16

Introducing CONST

FPRI CELI ST I F E K DI SK

/ copy pr ot ot ypes, get Pr i ce

D Get Pr i ce PI
D I t emNo 5P 0 const
D Zone 1A const
D Pr i ce 9P 2

/ f r ee
chai n (I t emNo: Zone) PRI CELI ST;

i f %f ound;
Pr i ce = pl Pr i ce;

el se;
I t emNo = - 1;

endi f ;

r et ur n;
/ end- f r ee

When you specify CONST, the compiler won’t let you change the value of the
parameter during the call.

Make sure you add
CONST to the code

in the /COPY as well.

Oops, I typed
I temNo instead of

Pr ice. But, because
of CONST this won’ t

compile!

CONST also helps make it self-documenting. You can see which are input and which are
output, since the input-only parameters have CONST.

17

CONST Convienience (1/2)

D Get Pr i ce PR Ext Pgm(‘ GETPRI CE’)
D I t emNo 5P 0 const
D Zone 1A const
D Pr i ce 9P 2

D TempI t em s 5P 0
D TempZone s 1A
D myPr i ce s 9P 2

Without CONST:
TempI t em = 1234;
TempZone = ‘ A’ ;
Get Pr i ce(TempI t em: TempZone: myPr i ce) ;

With CONST:
Get Pr i ce (1234 : ‘ A’ : myPr i ce) ;

When the compiler knows that a parameter is input-only, it’s able to do some
extra work for you.

You can pass a literal value instead of a variable when you use CONST. The compiler will
automatically create a temporary variable, store your literal in it, and pass the temporary
variable.

18

CONST Convienience (2/2)

D Cal cTax PR Ext Pgm(‘ CALCTAX’)
D Subt ot al 11P 2 const
D Regi on 3A const
D Tot al 11P 2

D TempVar s 11P 2
.
.

Without CONST:
TempVar = Tot al Cost – Di scount s;
Cal cTax(TempVar : Regi on: Tot al) ;

With CONST:
Cal cTax(Tot al Cost - Di scount s : Regi on: Tot al) ;

You can even pass an expression. It will be calculated, stored in a
temporary variable, and that temporary variable will be passed:

Or the output of a BIF or subprocedure:

BIF Example:
OpenFi l e(%t r i m(Li br ar y) + ‘ / ’ + %t r i m(Fi l e)) ;

Subprocedure Example:
LogEr r or (get Er r or Msg (er r or No)) ;

19

What if I don’t want a fixed-size?

Occasionally you want to write a program that will work with any size string
that RPG supports. For example, what if you want to write a program that’ll
center text in a string, no matter how long?

D Cent er PR Ext Pgm(' CTR001R4')
D St r i ng 65535A opt i ons(* var s i ze)
D Lengt h 15P 5 const

/ copy pr ot ot ypes, cent er
D Cent er PI
D St r i ng 65535A opt i ons(* var s i ze)
D Lengt h 15P 5 const

D l en s 10I 0
D t r i ml en s 10I 0
D st ar t s 10I 0
D Save s 65535A var y i ng

/ f r ee
l en = Lengt h;
Save = %t r i m(%subst (St r i ng: 1: Len)) ;
t r i ml en = %l en(Save) ;
st ar t = l en/ 2 - t r i ml en/ 2 + 1;
%subst (St r i ng: 1: l en) = * bl anks;
%subst (St r i ng: st ar t : t r i ml en) = Save;
r et ur n;

/ end- f r ee

OPTI ONS(* VARSI ZE) disables the
compiler’s check that you’ve
passed a long enough string.

With opt i ons(* VARSI ZE) , it’s
up to you to ensure that you
don’t access memory that you
aren’t allowed to access. So, be
extra careful when you use this!

Tip: ExtPgm can help when
you’ re stuck with an ugly

naming convention!

20

Calling *VARSIZE from CL

As mentioned earlier, you can call programs with PR/PI from older programs
or other languages. The prototype is nice to have, but it’s not required when
making a call.

PGM
DCL VAR(&TEST) TYPE(* CHAR) LEN(80)

CHGVAR VAR(&TEST) VALUE(‘ CENTER THI S')
CALL PGM(CTR001R4) PARM(&TEST 80)

SNDPGMMSG MSGI D(CPF9897) MSGF(QCPFMSG) MSGTYPE(* COMP) +
MSGDTA(&TEST)

ENDPGM

Since there aren’ t
prototypes in CL, you
have to use the
external name.

Since there’s no variable
declared, CL’s literals use
the same rules for
determining the variable
size as the command line
does. Numbers are 15,5,
characters are 32 long.

21

Calling *VARSIZE from RPG

Using the prototype makes it easier to read, and lets you use BIFs,
expressions and other tools to make the code easier to write and maintain.

/ copy pr ot ot ypes, cent er

D Er r Msg s 50A

/ f r ee

Er r Msg = ' I nval i d Account Number ' ;
cent er (Er r Msg: %si ze(Er r Msg)) ;

exf mt Scr een7;
* i nl r = * on;

/ end- f r ee

D Cent er PR Ext Pgm(' CTR001R4')
D St r i ng 65535A opt i ons(* var s i ze)
D Lengt h 15P 5 const

Always use the prototype
name when using
CALLP.

Because the 2nd parm is
CONST, a BIF can be used
to calculate the variable size.

22

What about optional parms?

It’s common to use optional parameters in RPG. They’re especially useful
when functionality needs to be added to a program without breaking
backward-compatibility.

What if you start doing business internationally, and need the GETPRICE
program to return the prices in different currencies? Existing programs are
fine, but new ones might pass a parameter for the currency type.

This is how that was done with *ENTRY PLIST:

C * ENTRY PLI ST
C PARM I t emNo
C PARM Zone
C PARM Pr i ce
C PARM oCur r ency

c i f %par ms >= 4
c eval Cur r ency = oCur r ency
c el se
c eval Cur r ency = ' us '
c endi f

23

Options(*nopass)

Making a parameter optional in a prototype can be done the same way you
did it before, if you use opt i ons(* nopass)

/ copy pr ot ot ypes, get pr i ce

D Get Pr i ce PI
D I t emNo 5P 0 const
D Zone 1A const
D Pr i ce 9P 2
D oCur r ency 32A const opt i ons(* nopass)

D Cur r ency s l i ke(oCur r ency)

/ f r ee
i f %par ms >= 4;

Cur r ency = oCur r ency;
el se;

Cur r ency = ' us ' ;
endi f ;

Remember to add this parm in the
/COPY member as well!

OPTIONS(*NOPASS) means that
the caller doesn’t have to add this
parm in order to call this program.

*NOPASS parameters must be at
the end of the parameter list.
Once you’ve declared one, any
parameters after it must also be
*NOPASS.Tip: You can include more than one “options” value on a

parameter by separating them with colons.

opt i ons(* nopass: * var s i ze)

24

Options(*omit)

A parameter can be declared as “omissible” with options(*omit). Strange as
it may sound, this doesn’t mean that you don’t have to pass the parameter!
What it means is that you can pass a special value of *OMIT instead of a
variable.

/ copy pr ot ot ypes, get pr i ce

D Get Pr i ce PI
D I t emNo 5P 0 const
D oZone 1A const opt i ons(* omi t)
D Pr i ce 9P 2
D oCur r ency 32A const
D opt i ons(* nopass: * omi t)

D Cur r ency s l i ke(oCur r ency)
D Zone s l i ke(oZone)

/ f r ee
i f %addr (oZone) = * NULL;

Zone = ' A' ;
el se;

Zone = oZone;
endi f ;

i f %par ms < 4 or %addr (oCur r ency) =* NULL;
Cur r ency = ' US' ;

el se;
Cur r ency = oCur r ency;

endi f ;

When a caller passes *OMIT, the
address passed for the parameter
is set to *NULL.

When both *NOPASS and *OMIT
are specified, you must first check
for *NOPASS, and only check
*OMIT if the parm was passed.

25

Calling *NOPASS and *OMIT

/ copy pr ot ot ypes, get pr i ce

/ f r ee

Get Pr i ce(54321 : ‘ B’ : myPr i ce) ;

Get Pr i ce(54321 : * omi t : myPr i ce) ;

Get Pr i ce(54321 : ‘ A’ : myPr i ce: ‘ Canada’) ;

Get Pr i ce(12345 : * omi t : myPr i ce: ‘ UK’) ;

Get Pr i ce(12345 : * omi t : myPr i ce: * omi t) ;

Calling a program that uses *NOPASS and *OMIT is easy when you use a
prototype.

Without a prototype, you can’t use *OMIT (unless you’re calling a
subprocedure), but you can still use *NOPASS simply by passing fewer
parameters.

26

Options(*RIGHTADJ)

D MyPr ogr am PR Ext Pgm(‘ MYPGM')
D Par m1 20A const opt i ons(* Ri ght Adj)

Opt i ons(* RI GHTADJ) can be used to tell the compiler to right-adjust a
CONST parameter value. (Requires V4R4 or later.)

/ copy pr ot ot ypes, MyPr ogr am

D MyPr ogr am PI
D Par m1 20A const opt i ons(* Ri ght Adj)

/ f r ee

. . . Par m1 now cont ai ns “ Pat i o Daddi o” . . .

/ copy pr ot ot ypes, MyPr ogr am

/ f r ee

MyPr ogr am(‘ Pat i o Daddi o’) ;

Sadly, I haven’t found a practical use for this feature.

27

Options(*TRIM)

D Joi nName PR Ext Pgm(' JOI NNAME')
D Fi r st 30A var y i ng const opt i ons(* t r i m)
D Last 30A var y i ng const opt i ons(* t r i m)
D Whol eName 50A

Opt i ons(* TRI M) can be used to tell the compiler to remove leading and
trailing blanks for a CONST parameter value. (Requires V5R3 or later)

/ copy pr ot ot ypes, j oi nname
D Joi nName PI
D Fi r st 30A var y i ng const opt i ons(* t r i m)
D Last 30A var y i ng const opt i ons(* t r i m)
D Whol eName 50A

/ f r ee
/ / I t ' s not necessar y t o t r i m bl anks, because t he
/ / compi l er has done i t f or us.
Whol ename = Last + ' , ' + Fi r st ;
r et ur n;

/ end- f r ee

/ copy pr ot ot ypes, j oi nname
D Scot t s 20A i nz(' Scot t ')
D Kl ement s 20A i nz(' Kl ement ')
D Whol e s 50A

/ f r ee
Joi nName(Scot t : Kl ement : Whol e) ;

/ / r esul t i s: “ Kl ement , Scot t “

28

Options(*NULLIND)

D SomePr ogr am PR Ext Pgm(‘ SOMEPGM')
D I nvDat e D opt i ons(* nul l i nd)

Opt i ons(* NULLI ND) tells the system that you want to pass null
indicators with a database field. (Requires V5R4 or later)

Without *NULLIND, if a null-capable database field is passed, the called
program (or procedure) doesn’t know if is set to null or not, and can’t
change whether it’s null or not.

/ copy pr ot ot ypes, SomePgm
D SomePr ogr am PI
D I nvDat e D opt i ons(* nul l i nd)

/ f r ee
i f %nul l i nd(I nvDat e) ;

%nul l i nd(I nvDat e) = * OFF;
I nvDat e = %dat e() ;

el se;
/ / Al r eady i nvoi ced.

endi f ;
r et ur n;

/ end- f r ee

Warning: This is how I expect *NULLIND to work, but I haven’t had a chance to
test a V5R4 system yet, so I may be wrong!

29

Prototypes & External Definitions

* * Pul l i n t he ext er nal def i ni t i ons f or t he CUSTMAS f i l e
D CUSTMAS_t E DS Ext Name(‘ CUSTMAS’)
D qual i f i ed
D based(Templ at e_Onl y)

D Get Cust Addr PR Ext Pgm(‘ CUSTADDR’)
D Cust No l i ke(CUSTMAS_t . cust no)
D const
D Cust Name l i ke(CUSTMAS_t . name)
D Cust Addr l i ke(CUSTMAS_t . addr)
D Cust Ci t y l i ke(CUSTMAS_t . c i t y)
D Cust St at e l i ke(CUSTMAS_t . s t at e)
D Cust Zi p l i ke(CUSTMAS_t . z i pCode)

Q: I prefer to use an externally defined file as a “data dictionary”. How can I
use an external field definition on a prototype?

A: Use LIKE to define the fields in the prototype. Put an externally defined
data structure into your /COPY member so you have an external definition
to reference.

30

Data Structures (V5R1+)

Q: Can I pass a data structure using a prototype?

A: You can use LIKEDS to pass a data structure in V5R1 or later.

/ copy pr ot ot ypes, exampl e

D Exampl e PI
D Dat aSt r uct l i keds(MyDat a)

/ f r ee
Dat aSt r uct . Fi el d1 = ‘ PARM 1 DATA’ ;
Dat aSt r uct . Fi el d2 = 19. 3412;

Inside the EXAMPLE program:

D MyDat a DS
D Fi el d1 10A
D Fi el d2 7P 4

D Exampl e PR Ext Pgm(‘ EXAMPLE’)
D Dat aSt r uct l i keds(MyDat a)

/ f r ee
cal l p Exampl e(MyDat a) ;

31

Data Structures (pre-V5R1)

D MyDat a DS
D Fi el d1 10A
D Fi el d2 7P 4

D Exampl e PR Ext Pgm(‘ EXAMPLE’)
D Dat aSt r uct l i ke(MyDat a)

/ f r ee
cal l p Exampl e(MyDat a) ;

A: If you don’t have V5R1, you have to use LIKE with pointer logic. (sorry!)

/ copy pr ot ot ypes, exampl e

D Exampl e PI
D Dat aSt r uct l i ke(MyDat a)

D Local Ver s i on DS based(p_dat a)
D Fi el d1 10A
D Fi el d2 7P 4

/ f r ee
p_dat a = %addr (Dat aSt r uct) ;
Fi el d1 = ‘ PARM 1 DATA’ ;
Fi el d2 = 19. 3412;

Inside the EXAMPLE program:

32

Multiple Occurrence DS

D MyDat a DS occur s(10)
D Fi el d1 10A
D Fi el d2 7P 4

D Exampl e PR Ext Pgm(‘ EXAMPLE’)
D Dat aSt r uct l i ke(MyDat a)

/ f r ee
%occur (MyDat a) = 1;
cal l p Exampl e(MyDat a) ;

This also must be done with pointer logic. Make sure you always pass the
first occurrence if you want the whole DS to be passed.

/ copy pr ot ot ypes, exampl e

D Exampl e PI
D Dat aSt r uct l i ke(MyDat a)

D Local Ver si on DS based(p_dat a)
D occur s(10)
D Fi el d1 10A
D Fi el d2 7P 4

/ f r ee
p_dat a = %addr (Dat aSt r uct) ;
f or x = 1 t o 10;

%occur (Local Ver si on) = x;
Fi el d1 = ‘ PARM 1 DATA’ ;
Fi el d2 = 19. 3412;

endf or ;

Inside the EXAMPLE program:

33

Arrays (1 of 2)

D Mont hs s 15P 2 di m(12)

D LoadSal esMon PR Ext Pgm(‘ MONSALES’)
D Dat a 15P 2 di m(12)

/ f r ee
cal l p LoadSal esMon(Mont hs) ;

To pass an array, simply code a DIM keyword on the prototype definition:

/ copy pr ot ot ypes, MonSal es
D LoadSal esMon PI
D Dat a 15P 2 di m(12)

/ f r ee
f or mont h = 1 t o 12;

chai n mont h Mont hSal es;
i f %f ound;

Dat a(mont h) = msTot al ;
el se;

Dat a(mont h) = 0;
endi f ;

endf or ;

Inside the MONSALES program:

34

Arrays (2 of 2)

D LoadSf l Page PI
D Cust No 4P 0 const
D PageSi ze 2P 0 const
D Or der No 5A di m(99) opt i ons(* var s i ze)
D Or dDat e D di m(99) opt i ons(* var s i ze)
D Shi pTo 25A di m(99) opt i ons(* var s i ze)
D Tot al 11P 2 di m(99) opt i ons(* var s i ze)

/ f r ee
f or x = 1 t o PageSi ze;

r eade (Cust No) ORDERFI L;
i f %eof ;

Leave;
endi f ;

Or der No(x) = of Or der ;
Or dDat e(x) = of Dat e;
Shi pTo(x) = of Shi pDs;
Tot al (x) = of Tot al ;

endf or ;

You can use opt i ons(* VARSI ZE) if you want to write a program that can
work with different sizes of arrays:

Some programs may call this with a 5 element array. Others with a 20
element. Web applications might want to read 80 or 90 at a time.

35

Prototypes and Subprocedures

Prototypes can also be used to call Java methods and ILE Subprocedures.
There are additional keywords that you can use with those.

• OPDESC
Pass an operational descriptor (prototype-level)

• EXTPROC
Provide a separate external name for the subprocedure. This also provides the ability to
adjust calling conventions for C, CL or Java. (Prototype-level)

• VALUE
Pass a parameter by VALUE instead of passing it’s address (Parameter level)

Return values:
Subprocedures can return a value that can be used in an expression. This is
also part of the prototype.

36

Not Associated with Prototypes

The following are NOT prototype keywords, but are commonly confused with
them. These are all data types:

• VARYING
Varying is a data type. You can specify it on a prototype, just as you’d specify packed, zoned
or data data types. It does not affect how the prototype works, but rather defines the data
type of one of the parameters. (Just as it does when used on a stand alone variable
declaration.)

• PROCPTR
Specifies that a pointer points to a procedure, rather than data. It’s a specific type of pointer.

• CLASS
Specifies which class a Java object reference belongs to. Again, this helps clarify the data
type of the object that you must pass as a parameter. It’s a data type, not a prototype
keyword.

37

This Presentation

You can download a PDF copy of this presentation from:

http://www.scottklement.com/presentations/

Thank you!

