
1

ILE Concepts

Presented by

Scott Klement
http://www.scottklement.com

© 2006-2023, Scott Klement

“There are 10 types of people in the world.
Those who understand binary, and those who don’t.”

For the Impatient RPG Programmer

2

What’s ILE?

• An environment in which code from many languages can be
compiled, bound together, and run.

• First introduced for ILE C in V2R3 (Feb 1993)
A new environment that lets you write small routines and bind them all together to make
programs.

• RPG, COBOL and CL join the party in V3R1 (May 1994)
RPG’s syntax is changed at the same time. The new RPG compiler that has ILE functions
is based on the 4th specification of the RPG language, aptly named “RPG IV”.

• The original style of programs is now called “OPM”
OPM = Original Program Model.

• Any to Any Procedure Calls
Any ILE language can call procedures written in any other language. These procedures
can be bound together to make a single program.

What is the Integrated Language Environment?

3

It’s All About the Call

The purpose of ILE is to provide tools to make it easier to
call programs and procedures.

It makes you more productive by making it easier for you
to write re-usable tools so that you never have to write the
same routine twice.

That’s pretty much it. That’s all ILE does.

(You can go now.)

4

ILE Key Concepts

• Activation Groups
Group programs together so they can share resources with one another and be
deactivated together.

• Subprocedures
Subroutines with parameters and local variables. Like “programs within
programs.”

• Modules
Subprocedures grouped together into an object.

• Programs
Modules with one entry point that can be run with the CALL command.

• Service Programs
Modules with many entry points that can be called from ILE programs.

ILE is all about writing modular, reusable code.

5

I don’t have time to learn that!

Sometimes people who are new to ILE are put off because the terms
sound like they’re complicated.

• Activation Groups -- Loading & Unloading programs together.
• Binding Directories -- A list, similar in concept to a library list, that’s

 searched when looking for a subprocedure.
• Binder Language -- A list of subprocedures in a service program

 that can be called externally.
• Static Binding / Bind by Copy / Dynamic Binding / Bind by Reference

 -- Whether a copy of a subprocedure is included
 in the program that needs it, or not.

All of these things sound more complicated than they really are! Don’t
let the terminology put you off. I’ll teach you all of this in 1.5 hours!

6

Smaller Pieces Work Better
dcl-f PRICELIST disk keyed usage(*input);

 // *ENTRY PLIST
 dcl-pi *n;
 ItemNo like(plItem) const;
 Zone like(plZone) const;
 Price like(plPrice);
 end-pi;

 chain (ItemNo: Zone) PRICELIST;
 if %found;
 Price = plPrice;
 else;
 Price = -1;
 endif;

 return;

Why are small routines better?
§ Takes less time to understand.
§ Easier to test, debug, and bullet-proof when it’s small.
§ Once bullet proofed, it’s a “black box” that can be reused from all over.
§ If one routine is re-used everywhere, there’s only one place to find errors or

make changes.

7

Activation of Many Programs

When an application consists of many different sub-programs, each
one has to be loaded into memory, and have all of it’s files opened, it’s
variables initialized, etc. Consider a sample application:

That’s 12 programs!

8

Activation Problems

To save time on subsequent calls to each program, you’d leave
*INLR turned off. This means:
• The files for all of the programs stay open.
• Record locks can get left behind by mistake.
• Variables remain in their previous state.
• An override will affect all programs, often by mistake.

To unload the programs, what can you do?
• The FREE op-code (ends pgm, but doesn’t close files or unlock data areas)
• Call each program with a parm to tell it to turn *INLR = *ON
• RCLRSC (Can close more than you intended!)
• Just leave everything in memory until the job ends.

None of the solutions helps with override problems!

Other languages don’t have LR and can’t turn LR off!

9

Taking Out the Trash

Unloading programs is like taking out the trash. When you’re ready to
throw something away, how do you do it?

• Do you carry each piece of refuse out to a dumpster? (This is what it’s like
when you call each program to turn on LR.)

• Do you wait until garbage day, have the truck pull into the house, and throw
everything into the truck? (That’s what RCLRSC is like.)

• Do you wait until you’re done with everything in the house, then throw the
house away? (That’s what SIGNOFF is like.)

No, of course not. You throw everything into a garbage bag. Then you
can discard the whole bag.

• Activation groups are like garbage bags.
• Load your programs into activation groups.
• When you’re done, throw away everything in the activation group.

Activation groups are like sub-sections of a job. Maybe think of them
as “jobs within a job”.

10

Two Garbage Bags

Order Entry Application

Lookup Item Information

Get Price for Item

Discounts for Item and Cust

Add Item to Order

Calc Bottom-Line Discount

Calculate Tax

Look Up Customer Info

Putting each application in it’s own ACTGRP makes it possible to
unload all of it’s components at once, without affecting other programs
that you may want to leave loaded.

Look up Prev Orders

Get Order Hdr

Get Order Body

Get Order Footer

RCLACTGRP ACTGRP(ORDENT)
RCLACTGRP ACTGRP(DSPORD)

ORDENT
activation

group,

DSPORD
activation

group,

11

Using Activation Groups

Each program or service program is assigned an activation group when
you create it. You assign it with the ACTGRP parameter.

• CRTBNDRPG PGM(OEMAIN) ACTGRP(ORDENT)
• CRTBNDRPG PGM(OEITEM) ACTGRP(*CALLER)
• CRTBNDRPG PGM(OECUST) ACTGRP(*CALLER)
• etc.
• CRTBNDRPG PGM(DSPORDMAIN) ACTGRP(DSPORD)
• CRTBNDRPG PGM(ORDHDR) ACTGRP(*CALLER)
• CRTBNDRPG PGM(ORDBODY) ACTGRP(*CALLER)
• etc.

Better yet, you can assign the ACTGRP value in your CTL-OPT (or H-
spec), so that you won’t forget what to do next time.

CTL-OPT DFTACTGRP(*NO) ACTGRP(*CALLER);

12

Special ACTGRP Values
• DFTACTGRP(*YES)

This means “act like an OPM program”. Program is unable to use ILE features.
Program is unloaded from memory if LR is on.

• DFTACTGRP(*NO)
This means “act like an ILE program.” Program remains in memory til ACTGRP
is destroyed. (Even in default!) LR still closes files and causes variables to be
reinitialized on the next call.

• ACTGRP(*CALLER)
This means “use the same ACTGRP as the program that called me”. If called
from ACTGRP(ORDENT), this program will run in ORDENT. If called from the
command line or an OPM program, it’ll run in the default activation group.

• ACTGRP(*NEW)
Create a new activation group, with a system-generated name, every time this
program is called. Automatically destroy that activation group when this program
ends.

• ACTGRP(anything else)
Ordinary named activation group. RCLACTGRP must be used to destroy it (or
SIGNOFF). (There’s nothing special about QILE!)

13

Overrides and Opens

You can scope overrides and shared opens to the activation group so
that they won’t affect programs in other activation groups.

OVRDBF FILE(CUSTMAS) SHARE(*YES) OVRSCOPE(*ACTGRPDFN)
 OPNQRYF FILE(CUSTMAS) OPNSCOPE(*ACTGRPDFN)

*ACTGRPDFN means:
• From the default activation group, act like *CALLLVL
• From an ILE activation group, only affect that activation group.

This way, you can control which programs are, and which programs are
not, affected by your overrides!

Remember: Activation groups are part of a job. An override scoped to an
activation group will not affect other jobs on the system, even if they have
activation groups with the same name.

14

ACTGRPs and Performance

The special value of ACTGRP(*NEW) has received a bad reputation for
performance. Part of the reason for this is that people don’t
understand what’s happening:

• It’s creating and destroying the activation group that takes the time.
• You can do the same exact thing with ACTGRP(name) and RCLACTGRP

and they perform the same (actually, *NEW is slightly faster!)

200 (CISC) V3R2 270 (RISC) V4R5
One time 0.0981 seconds 0.0106 seconds

On a 1,000,000 record file approx 26 hrs approx 2.8 hours

Creating an ACTGRP requires work. The CPU has to do something, so
it does take time, it’s true. But it’s not a problem unless you do it in a
loop!

15

Main and Sub- Procedures (1/2)
Programs are made up of one or more modules.
Modules consist of one or more procedure.
There are two types of procedures, main procedures and subprocedures.

Main procedures:
• Are what you would normally think of as your “program”
• Is where the RPG cycle runs.
• Are what gets called when your program is called by the CALL command,

the CALL op-code, or an EXTPGM prototype.
• Can also be called with a bound call (CALLB or prototype)

Subprocedures:
• Are like subroutines, but with parameters.
• Can have their own local variables.
• Before 6.1 -- Never have F-specs, must use the “global” files from the main

procedure.
• Can be called using CALLB or a prototype (without EXTPGM)
• Start and end with P-specs.

Dcl-F CUSTMAS Usage(*Input) Keyed;

Dcl-PR SUBPROC;
 NoCust like(CustNo);
End-PR;

READ CUSTMAS;
DOW NOT %EOF(CUSTMAS);
 SUBPROC(CustNo);
 READ CUSTMAS;
ENDDO;

*INLR = *ON;

Dcl-Proc SUBPROC;
 Dcl-PI SUBPROC;
 NoCust like(CustNo);
 End-PI;
 COUNT = COUNT + 1;
End-Proc;

16

Main and Sub- Procedures (2/2)

MAIN
PROCEDURE

SUB
PROCEDURE

Note:
• Without ExtPgm, prototypes are assumed to call a procedure.
• If you want to refer to a subprocedure by an alternate name, you can use the

ExtProc keyword on the PR line.
• Subprocedures are like little programs within a program
• Or maybe like subroutines with their own parameters and variables.

Dcl-PR CalcTax Packed(9:2);
 State Char(2);
 Amount Packed(9:2);
End-PR;

17

Prototypes

A prototype is very much like a parameter list (PLIST), but is newer and
has a lot of additional features. You can use a prototype to call a
program, a subprocedure, or a Java class.

Return ValueFirst Parameter Second ParameterPrototype Name

• Prototype name
This is the name you’ll use when using the prototype to make a call. By default, it’s also the
name of the procedure that it calls.

• First Parameter
The first parameter to the procedure (name is for documentation, no variable is declared.)

• Second Parameter
You can have as many parameters as you like, from 0-255 to a program, or 0-399 to a
procedure.

• Return Value (optional)

18

Special Keywords
Although subprocedures can be used to call programs and Java methods,
there are some prototype keywords that are only used by subprocedures.
They are as follows:

• OPDESC
Pass an operational descriptor (prototype-level)

• EXTPROC
Provide a separate external name for the subprocedure. This also provides the ability to
adjust calling conventions for C, CL or Java. (Prototype-level)

• VALUE
Pass a parameter by VALUE instead of passing it’s address (Parameter level) Parameters
passed by value do not share memory with their callers, and therefore are “one-way”
parameters.

Return values:
Subprocedures can return a value that can be used in an expression. This is
also part of the prototype.

Ctl-Opt DFTACTGRP(*NO);

Dcl-PR Date2Iso Zoned(8:0);
 DateFld Date const;
End-PR;

Dcl-S Today Date;
Dcl-S InvDate Zoned(8:0);

Today = %date();
 .
 .
InvDate = Date2Iso(Today);

//+++
// Convert date field to numeric field in YYYYMMDD format.
//+++
Dcl-Proc Date2Iso EXPORT;
 Dcl-PI Date2Iso Zoned(8: 0);
 DateFld Date const;
 End-PI;
 Dcl-S Output Zoned(8: 0);
 Output = %int(%char(DateFld: *ISO0));
 return Output;
End-Proc;

19

Subprocedure Example

OPM compatibility
must be off.

Return values can
be used in

expressions.

Subprocedure code
goes (after the O-specs)

at the bottom of the
program..

20

Modules (1 of 2)
What’s a module?
• A source member is compiled into a *MODULE object.
• A module can contain many different subprocedures. Each one can be “exported” so

that each one can be called individually.
• A *MODULE object contains compiled and translated code, but that code

cannot be run.
• The only use for a *MODULE object is to “bind it” to create a program or

service program.
• A program (or service program) requires at least one module, and can

consist of many.
• Modules are no longer needed once the program has been created.

(However, you might want to save them to speed up future program builds.)

Typically:
• The first module in a program has a main procedure. That main procedure

is what’s called when the program is first run.
• The rest of the modules have no main procedure, just subprocedures.

21

Modules (2 of 2)

CRTCLMOD

CRTRPGMOD

CRTCBLMOD

CRTCMOD

Proc. D

Proc. C
Proc. C

Proc. B

Proc. A

Proc. A

CL Source

RPG Source

COBOL Source

C Source

CRTPGM
MOD(A,B,C,D)

*MODULE Objects

This diagram was created by
Susan Gantner of Partner400.com.
Used with permission.

22

Exporting Subprocedures

Allow subprocs in
different modules to

call this one..

This Enables:
• You can write a whole library of useful and handy subprocedures.
• Put them all in a module.
• Any subprocedure you want to be called externally can be marked with

EXPORT
• Prototypes for these external subprocedures should be put together in a

/COPY file.
• Subprocedures that are only used internally are not exported, and their

prototypes are not in the /copy file, but instead aren’t prototyped, or are
placed in the DCL specs of the module.

Dcl-Proc Date2Iso EXPORT;
 .
 .
End-Proc;

23

Sample Module (1 of 6)
Over the next several slides,
I’ll show you a sample of a
typical “NOMAIN” module
that contains business
logic. It consists of:
• The module code.
• The prototypes member
(also has DS and CONST)

Since the prototype member
is mostly the same as the
PI’s that I show in the code, I
won’t print that member on
these slides.

**free

Ctl-Opt NOMAIN;

Dcl-F CUSTFILE Usage(*Input) Keyed USROPN;
Dcl-F ORDBYCUST Usage(*Input) Keyed USROPN;

/copy prototypes,custr4

Dcl-PR CEE4RAGE;
 procedure Pointer(*PROC) const;
 feedback Char(12) options(*omit);
End-PR;

Dcl-PR SetError;
 ErrNo Int(10) value;
 Msg Varchar(80) const;
End-PR;

Dcl-S Initialized Ind inz(*OFF);
Dcl-S LastCust Char(8);
Dcl-S save_Errno Int(10) inz(0);
Dcl-S save_ErrMsg Varchar(80) inz('No Error');

24

Sample Module (2 of 6)

Since there’s no RPG
cycle, we need to open
and close files manually.

You could certainly put
other “first run” code
here as well.

These don’t have to be
exported routines, but I
like to export them just
in case the caller should
want to control when
our files are opened and
closed.

It’s expected that most
callers won’t use these
routines.

//+++
// cust_init(): Initialize customer module
// Note: If you don't call this manually, it'll be called
// automatically when you call another subprocedure
//+++
Dcl-Proc cust_Init export;
 if (Initialized);
 return;
 endif;

 open CUSTFILE;
 open ORDBYCUST;

 CEE4RAGE(%paddr(Cust_Done): *omit);
 Initialized = *on;

End-Proc;

//+++
// cust_Done(): Done with module
// Note: If you don't call this manually, it'll be called
// automatically when the activation group is reclaimed
//+++
Dcl-Proc cust_Done export;

 if %open(CUSTFILE);
 close CUSTFILE;
 endif;
 if %open(ORDBYCUST);
 close ORDBYCUST;
 endif;
 Initialized = *OFF;

End-Proc;

This routine gets a
customer’s address
for the caller.

The DS is defined in
the /copy member.

Because the DS in the
copy member, the
caller can use
LIKEDS for their
copy, too!

Dcl-Proc cust_getAddr export;

 Dcl-PI cust_getAddr Ind;
 CustNo Char(8) const;
 Addr likeds(Cust_address_t);
 End-PI;
 Dcl-S Err Int(10);

 Cust_Init();
 chain(e) CustNo CUSTFILE;
 if %error;
 err = %status();
 SetError(CUST_ECHNERR: 'RPG status ' + %char(err)
 + ' on CHAIN operation.’);
 return *OFF;
 endif;

 if not %found;
 SetError(CUST_ENOTFND: 'Customer Not Found’);
 return *OFF;
 endif;

 Addr.Name = Name;
 Addr.Street = Street;
 Addr.City = City;
 Addr.State = State;
 Addr.ZipCode = ZipCode;
 return *ON;

End-Proc;

25

Sample Module (3 of 6)

Dcl-DS CUST_Address_t qualified based(TEMPLATE);
 Name Char(25);
 Street Char(30);
 City Char(15);
 State Char(2);
 ZipCode Zoned(9:0);
 End-DS;

26

Sample Module (4 of 6)

This slide and the
next show routines
that you might use
when reading a list of
orders for a
customer.

To start a list of
orders, just SETLL to
get the file positioned
in the right place.

//+++
// cust_StartOrdList(): Start a list of orders for a customer
//
// CustNo = (input) Customer to get orders for
//+++
Dcl-Proc cust_StartOrdList Export;

 Dcl-PI cust_StartOrdList Ind;
 CustNo Char(8) const;
 End-PI;

 Cust_Init();

 setll CustNo ORDBYCUST;
 if not %equal;
 SetError(CUST_ENOORDS: 'No Orders Found for Cust ‘
 + CustNo);
 return *OFF;
 endif;

 LastCust = CustNo;
 return *ON;
End-Proc;

27

Sample Module (5 of 6)

This’ll be called in a
loop. It reads the
next order for a
customer, and returns
the order number.

Why put this in a separate module?
• I may want to use it from 100 places.
• Next year, we may use SQL instead.
• Or maybe a stream file.
• 5 years from now, it might use a web service

• If I find a bug, there’s only one place to fix it.
• I can change the underlying file access

without changing the callers.

//+++
// cust_ReadOrdList(): Get next order from order list
//
// Ord = (output) Order number of next order
//
// Returns *ON if successful, or *OFF at the end of the list
//+++
Dcl-Proc cust_ReadOrdList Export;

 Dcl-PI cust_ReadOrdList Ind;
 Ord Char(5);
 End-PI;

 reade LastCust ORDBYCUST;
 if %eof;
 return *OFF;
 endif;
 Ord = OrderNo;
 return *ON;

End-Proc;

28

Sample Module (6 of 6)

This is how we’re
able to communicate
error information to
the caller.

Error numbers are
defined as constants
in the /COPY member
so that our callers
can use them, too!

//+++
// cust_Error(): Get last error that occurred in this module
//
// ErrNo = (output/optional) Error number
//
// Returns the last error message
//+++
Dcl-Proc cust_Error Export;
 Dcl-PI cust_Error Varchar(80);
 ErrNo Int(10) options(*nopass:*omit);
 End-PI;

 Cust_Init();

 if %parms>=1 and %addr(Errno)<>*NULL;
 ErrNo = save_Errno;
 endif;

 return save_ErrMsg;
End-Proc;

//+++
// SetError(): (INTERNAL) set the error number and message
//+++
Dcl-Proc SetError;
 Dcl-PI SetError;
 ErrNo Int(10) value;
 Msg Varchar(80) const;
 End-PI;

 save_Errno = Errno;
 save_ErrMsg = Msg;
End-Proc;

29

…for example, to use
this module to
display a customer’s
address, and the
order numbers in the
system for that
customer….

Calling Sample Module (1 of 3)

30

Calling Sample Module (2 of 3)

The first screen asks
for a customer
number. We’ll use it
to load the address.

If an error occurs,
cust_error() is called
to get an error
message.

**free
Dcl-F SHOWCUSTS WORKSTN SFILE(SFL2: RRN) INDDS(ScreenInds);

/copy prototypes,custr4

Dcl-DS ScreenInds;
 Exit Ind overlay(ScreenInds:03);
 ClearSfl Ind overlay(ScreenInds:50);
 ShowSfl Ind overlay(ScreenInds:51);
End-DS;

Dcl-S RRN Packed(4:0);
Dcl-S Repeat Ind inz(*ON);
Dcl-DS Addr likeds(Cust_address_t);

dow Repeat;
 exfmt screen1;
 scErrMsg = *blanks;
 Repeat = *Off;

 if Exit;
 *inlr = *on;
 return;
 endif;

 if cust_getAddr(scCust: Addr) = *OFF;
 Repeat = *ON;
 scErrMsg = cust_error();
 endif;
enddo;

scName = Addr.Name;
scStreet = Addr.Street;
scCity = Addr.City;
scState = Addr.State;
scZip = Addr.ZipCode;

ClearSfl = *On;
write SFLCTL2;
ClearSfl = *OFF;
RRN = 0;

ShowSfl = cust_StartOrdList(scCust);

dow cust_ReadOrdList(scOrderNo);
 RRN = RRN + 1;
 write SFL2;
enddo;

write SFLFTR2;
exfmt SFLCTL2;

*inlr = *on;

31

Calling Sample Module (3 of 3)

CRTRPGMOD MODULE(CUSTR4) SRCFILE(mylib/QRPGLESRC)

CRTDSPF FILE(SHOWCUSTS) SRCFILE(mylib/QDDSSRC)
CRTRPGMOD MODULE(SHOWCUST) SRCFILE(mylib/QRPGLESRC)

CRTPGM PGM(SHOWCUST) MODULE(SHOWCUST CUSTR4) ACTGRP(TEST)

The address is loaded
into the header
record, and the order
numbers are loaded
into the subfile.

To compile, create the
display file, and the two
modules.

Then bind the two modules
into one *PGM.

Note: CRTxxxMOD
is opt 15 from PDM.

32

More About Binding.

Remember, the *MODULE object is only useful for creating programs.
Once the CRTPGM command is done, the *MODULE objects can be deleted,
the program will still work. This is because a COPY of all of the compiled
code has been included into your program.

This is called “Bind By Copy”. (One type of “static” binding.)
Unfortunately, this means that if you used the CUST routines in 50 programs,
if you wanted to make a change, you’d have to:
• Re-compile the module.
• Determine which programs use it.
• Re-bind all of the programs.

Fortunately, there’s another way. You can bind the module to a special object
called a service program (*SRVPGM). Then, you can run the procedures in
the service program instead of copying them into your programs.

This is called “Bind By Reference”. (Another type of “static” binding.)

33

Service Programs

A *SRVPGM are very much like regular a regular *PGM. It’s an executable
object on the system. It contains procedures that you can run. Except:

• Instead of one entry point, a service program has many. (One for each
subprocedure.)

• Calls to it can be made from other code (not cmd line).

• You cannot call it with the CALL command. Instead, you call the procedures in it,
the same way you’d call any other subprocedure.

• Calls to a service program (or a bound module) are much faster than dynamic
(traditional “CALL command”) calls.

34

Binder Language (1 of 3)

STRPGMEXP SIGNATURE('CUSTR4 Sig Level 1.00')
 export symbol(cust_init)
 export symbol(cust_done)
 export symbol(cust_getAddr)
 export symbol(cust_StartOrdList)
 export symbol(cust_ReadOrdList)
 export symbol(cust_Error)
ENDPGMEXP

Since a service program contains many subprocedures, you have to tell it
which ones can be called externally. This is done using “Binder Language”.

Don’t let the word “language” fool you. Binder language is very simple, it’s
only job is to list the procedures you want to export.

The SIGNATURE parameter works like level checks do. When you bind a
program, it remembers the signature. If the signature changes, you’ll get a
“Signature Violation” error.

35

Binder Language (2 of 3)

STRPGMEXP SIGNATURE('CUSTR4 Sig Level 1.00')
 export symbol(cust_init) -- 1
 export symbol(cust_done) -- 2
 export symbol(cust_getAddr) -- 3
 export symbol(cust_StartOrdList) -- 4
 export symbol(cust_ReadOrdList) -- 5
 export symbol(cust_Error) -- 6
 ENDPGMEXP

A program calls subprocedures in a service program by number.

If you rearrange the procedures in the binder source, a program could end up calling the wrong
one.

1.If your program was set up to cust_getAddr(), it’ll remember it as #3.
2.If you later recompile the service program, but add a new subprocedure at the top of the list, cust_done()

might become #3!
3.The program would then call cust_done() when it was supposed to call cust_getAddr()!

The moral of the story? Always add new procedures to the end so that the
existing numbers won’t change. Then you don’t have to re-bind the callers!
If you absolutely must change the order of the procs, change the signature to protect
you from calling the wrong procedures.

36

Binder Language (3 of 3)

STRPGMEXP SIGNATURE(*GEN) PGMLVL(*CURRENT)
 export symbol(cust_init)
 export symbol(cust_done)
 export symbol(cust_getAddr)
 export symbol(cust_StartOrdList)
 export symbol(cust_ReadOrdList)
 export symbol(cust_Error)
 ENDPGMEXP

 STRPGMEXP SIGNATURE(*GEN) PGMLVL(*PRV)
 export symbol(cust_init)
 export symbol(cust_done)
 export symbol(cust_getAddr)
 ENDPGMEXP

It’s possible to have more than one signature block, and have the OS
generate the signatures based on the names and order of the exports.

However, I’ve never found any benefit to doing so. After 5 or 10 changes, it
becomes very awkward to keep adding more signature blocks!

37

Building Service Programs

You build service programs from *MODULE objects, just like programs. The
only difference is that you use CRTSRVPGM instead of CRTPGM.

CRTRPGMOD MODULE(CUSTR4) SRCFILE(mylib/QRPGLESRC)

 CRTSRVPGM SRVPGM(CUSTR4) MODULE(CUSTR4) EXPORT(*SRCFILE)
 SRCFILE(mylib/QSRVSRC) ACTGRP(*CALLER)

 CRTDSPF FILE(SHOWCUSTS) SRCFILE(mylib/QDDSSRC)
 CRTRPGMOD MODULE(SHOWCUST) SRCFILE(mylib/QRPGLESRC)

 CRTPGM PGM(SHOWCUST) MODULE(SHOWCUST) BNDSRVPGM(CUSTR4)

Note the following:

• The SRCFILE listed on the CRTSRVPGM command is the binder source and not the RPG
source.

• Changing from a *MODULE bound by copy to a *SRVPGM bound by reference only
required creating a list of exports, and changing the commands used to compile. (I didn’t
change my RPG code at all!)

38

Binding Directories

CRTBNDDIR BNDDIR(QGPL/MYSRVPGMS)
ADDBNDDIRE BNDDIR(QGPL/MYSRVPGMS) OBJ(*LIBL/CUSTR4 *SRVPGM)
ADDBNDDIRE BNDDIR(QGPL/MYSRVPGMS) OBJ(*LIBL/ORDERS *SRVPGM)
ADDBNDDIRE BNDDIR(QGPL/MYSRVPGMS) OBJ(*LIBL/UTILS *SRVPGM)
ADDBNDDIRE BNDDIR(QGPL/MYSRVPGMS) OBJ(*LIBL/ACCTRCV *SRVPGM)

Binding directories are similar to library lists. They contain a list of
*SRVPGM and *MODULE objects.
• Instead of listing every object on on the CRTPGM command, use a BNDDIR
• The binder will search the BNDDIR for a needed subprocedure.
• The binder will only bind your pgm/srvpgm to objects containing procedures that

you call. The others won’t be bound to your program.

For many shops, creating one binding directory for all of their service programs is
ideal. Then the only special step needed to compile programs (and get all of the
routines they need) is to specify the binding directory:

CRTPGM PGM(SHOWCUST) MODULE(SHOWCUST) BNDDIR(MYSRVPGMS)

39

CRTBNDRPG

The CRTBNDRPG command is a shortcut for CRTRPGMOD (to QTEMP)
followed by CRTPGM for a single module.

You can specify a BNDDIR on the CRTBNDRPG command, or your H-spec, to tell
CRTBNDRPG to bind to modules or service programs.

If you add the following H-specs to the SHOWCUST example program

CRTBNDRPG PGM(SHOWCUST) SRCFILE(mylib/QRPGLESRC)

You can even include a BNDDIR on your H-spec so that you don’t have to remember it:

H BNDDIR('QGPL/MYSRVPGMS':'OTHERDIR': 'EXAMPLE')

H DFTACTGRP(*NO) ACTGRP('TEST')
H BNDDIR('QGPL/MYSRVPGMS':'OTHERDIR': 'EXAMPLE')

Then you could compile it as follows (very close in simplicity to CRTRPGPGM!)

… or you can use PDM option 14. (Which will call CRTBNDRPG)

40

This Presentation

You can download a PDF copy of this presentation from:
http://www.scottklement.com/presentations/

Thank you!

